采用python+flask+pandas+决策树算法
决策树是一种基于树状结构的机器学习模型,用于解决回归和分类问题。在回归问题中,决策树可以根据输入特征的值预测连续目标变量的值。
DecisionTreeRegressor
使用的是基于 CART(Classification and Regression Trees)算法的决策树回归。CART 算法通过递归地将数据集划分为更小的子集,并在每个子集上构建决策树,直到满足预定义的停止条件。每个节点的划分依据是选择能够最大程度地减少目标变量的方差或均方差的特征和切分点。
注册登录界面
数据分析模块,多个模式的分析
数据查询
预测数据
有需要的同学可以联系