毕业设计之基于Python的农产品价格分析系统

本文介绍了如何在PythonFlask框架下使用Pandas库进行数据处理,结合决策树(如CART算法)进行回归和分类问题的解决,包括注册登录界面的开发,以及数据分析和预测功能的实现。
摘要由CSDN通过智能技术生成

采用python+flask+pandas+决策树算法

  决策树是一种基于树状结构的机器学习模型,用于解决回归和分类问题。在回归问题中,决策树可以根据输入特征的值预测连续目标变量的值。

DecisionTreeRegressor 使用的是基于 CART(Classification and Regression Trees)算法的决策树回归。CART 算法通过递归地将数据集划分为更小的子集,并在每个子集上构建决策树,直到满足预定义的停止条件。每个节点的划分依据是选择能够最大程度地减少目标变量的方差或均方差的特征和切分点。

注册登录界面

数据分析模块,多个模式的分析

数据查询

预测数据

有需要的同学可以联系

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值