前面一段时间记录了一下WidowX-250s机械臂的学习与遥操作演示,相关链接如下:
WidowX-250s 机械臂学习记录:
https://blog.csdn.net/qq_54900679/article/details/145556979
WidowX-250s 机械臂遥操作演示记录:
https://blog.csdn.net/qq_54900679/article/details/145578127
接下来进行WidowX-250s 机械臂的数字孪生操作演示,也可以理解为用真机去遥控仿真中的机械臂运动,即Real2Sim!
系统:Ubuntu20.04,ROS1;硬件:1台笔记本、1台机械臂
1.机械臂的launch启动文件配置以及话题读取
因为原先完成了aloha相关项目的配置,所以对于这次的WidowX-250s机械臂的序列号配置,依然保留原先的命名风格。
主动端的机械臂序列号名称定义为:/dev/ttyDXL_master_left
首先需要启动机械臂的launch运行文件,single_real2sim.launch文件内容如下:
<launch>
<arg name="robot_model_master" default="wx250s"/>
<arg name="base_link_master" default="base_link"/>
<arg name="master_node" default="$(find aloha)/config_single/master_modes_left.yaml"/>
<arg name="launch_driver" default="true"/>
<arg name="use_sim" default="false"/>
<arg name="robot" value="master_left"/>
<include if="$(arg launch_driver)" file="$(find interbotix_xsarm_control)/launch/xsarm_control.launch">
<arg name="robot_model" value="$(arg robot_model_master)"/>
<arg name="robot_name" value="$(arg robot)"/>
<arg name="base_link_frame" value="$(arg base_link_master)"/>
<arg name="use_world_frame" value="false"/>
<arg name="use_rviz" value="false"/>
<arg name="mode_configs" value="$(arg master_node)"/>
<arg name="use_sim" value="$(arg use_sim)"/>
</include>
<node
name="master_left_transform_broadcaster"
pkg="tf2_ros"
type="static_transform_publisher"
args="0 -0.25 0 0 0 0 /world /$(arg robot)/base_link"/>
</launch>
launch文件的运行指令:
roslaunch single_real2sim.launch
继续重新开启一个终端,运行查看关节话题:
rostopic list
终端会显示:
我们来查看一下/master_left/joint_states:
rostopic echo /master_left/joint_states
终端会显示如下关节信息的动态变化:
我们需要获取的是其中的position数据列表,将其实时的发送给仿真环境中。
2.Mujoco仿真环境的关节数据读取
下面继续基于Mujoco仿真环境来进行机械臂的关节信息读取,以mink项目的调试为例:
可以看到左臂的6个关节的qpos数据可以获取到(调试中不包含夹爪的qpos,只是用来演示一下),我们要做的就是将这个qpos数据实时替换为真实机械臂的position数据,这样就可以实现真实与仿真的连通了。
3.利用真机遥操作Mujoco仿真中的ARM
好了,下面开始Real2Sim,好戏开始:
定义一个机械臂的回调函数python脚本(arm_aloha_real_recorder.py):
注意:下面只用来测试单臂的遥操作
import numpy as np
import time
# from constants import DT
from interbotix_xs_msgs.msg import JointSingleCommand
import IPython
e = IPython.embed
### ALOHA fixed constants
DT = 0.02
FPS = 50
class ArmRecorder:
def __init__(self, init_node=True, is_debug=False):
from collections import deque
import rospy
from sensor_msgs.msg import JointState
from interbotix_xs_msgs.msg import JointGroupCommand, JointSingleCommand
self.secs = None
self.nsecs = None
self.qpos = None
self.effort = None
self.arm_command = None
self.gripper_command = None
self.is_debug = is_debug
if init_node:
rospy.init_node('recorder', anonymous=True)
rospy.Subscriber(f"/master_left/joint_states", JointState, self.puppet_state_cb)
rospy.Subscriber(f"/master_left/commands/joint_group", JointGroupCommand, self.puppet_arm_commands_cb)
rospy.Subscriber(f"/master_left/commands/joint_single", JointSingleCommand, self.puppet_gripper_commands_cb)
if self.is_debug:
self.joint_timestamps = deque(maxlen=50)
self.arm_command_timestamps = deque(maxlen=50)
self.gripper_command_timestamps = deque(maxlen=50)
time.sleep(0.1)
def puppet_state_cb(self, data):
self.qpos = data.position
self.qvel = data.velocity
self.effort = data.effort
self.data = data
if self.is_debug:
self.joint_timestamps.append(time.time())
def puppet_arm_commands_cb(self, data):
self.arm_command = data.cmd
if self.is_debug:
self.arm_command_timestamps.append(time.time())
def puppet_gripper_commands_cb(self, data):
self.gripper_command = data.cmd
if self.is_debug:
self.gripper_command_timestamps.append(time.time())
def print_diagnostics(self):
def dt_helper(l):
l = np.array(l)
diff = l[1:] - l[:-1]
return np.mean(diff)
joint_freq = 1 / dt_helper(self.joint_timestamps)
arm_command_freq = 1 / dt_helper(self.arm_command_timestamps)
gripper_command_freq = 1 / dt_helper(self.gripper_command_timestamps)
print(f'{joint_freq=:.2f}\n{arm_command_freq=:.2f}\n{gripper_command_freq=:.2f}\n')
def get_arm_joint_positions(bot):
return bot.arm.core.joint_states.position[:6]
def get_arm_gripper_positions(bot):
joint_position = bot.gripper.core.joint_states.position[6]
return joint_position
def move_arms(bot_list, target_pose_list, move_time=1):
num_steps = int(move_time / DT)
curr_pose_list = [get_arm_joint_positions(bot) for bot in bot_list]
traj_list = [np.linspace(curr_pose, target_pose, num_steps) for curr_pose, target_pose in zip(curr_pose_list, target_pose_list)]
for t in range(num_steps):
for bot_id, bot in enumerate(bot_list):
bot.arm.set_joint_positions(traj_list[bot_id][t], blocking=False)
time.sleep(DT)
def move_grippers(bot_list, target_pose_list, move_time):
gripper_command = JointSingleCommand(name="gripper")
num_steps = int(move_time / DT)
curr_pose_list = [get_arm_gripper_positions(bot) for bot in bot_list]
traj_list = [np.linspace(curr_pose, target_pose, num_steps) for curr_pose, target_pose in zip(curr_pose_list, target_pose_list)]
for t in range(num_steps):
for bot_id, bot in enumerate(bot_list):
gripper_command.cmd = traj_list[bot_id][t]
bot.gripper.core.pub_single.publish(gripper_command)
time.sleep(DT)
def setup_puppet_bot(bot):
bot.dxl.robot_reboot_motors("single", "gripper", True)
bot.dxl.robot_set_operating_modes("group", "arm", "position")
bot.dxl.robot_set_operating_modes("single", "gripper", "current_based_position")
torque_on(bot)
def setup_master_bot(bot):
bot.dxl.robot_set_operating_modes("group", "arm", "pwm")
bot.dxl.robot_set_operating_modes("single", "gripper", "current_based_position")
torque_off(bot)
def set_standard_pid_gains(bot):
bot.dxl.robot_set_motor_registers("group", "arm", 'Position_P_Gain', 800)
bot.dxl.robot_set_motor_registers("group", "arm", 'Position_I_Gain', 0)
def set_low_pid_gains(bot):
bot.dxl.robot_set_motor_registers("group", "arm", 'Position_P_Gain', 100)
bot.dxl.robot_set_motor_registers("group", "arm", 'Position_I_Gain', 0)
def torque_off(bot):
bot.dxl.robot_torque_enable("group", "arm", False)
bot.dxl.robot_torque_enable("single", "gripper", False)
def torque_on(bot):
bot.dxl.robot_torque_enable("group", "arm", True)
bot.dxl.robot_torque_enable("single", "gripper", True)
def calibrate_linear_vel(base_action, c=None):
if c is None:
c = 0.
v = base_action[..., 0]
w = base_action[..., 1]
base_action = base_action.copy()
base_action[..., 0] = v - c * w
return base_action
def smooth_base_action(base_action):
return np.stack([
np.convolve(base_action[:, i], np.ones(5)/5, mode='same') for i in range(base_action.shape[1])
], axis=-1).astype(np.float32)
def postprocess_base_action(base_action):
linear_vel, angular_vel = base_action
angular_vel *= 0.9
return np.array([linear_vel, angular_vel])
if __name__ == '__main__':
record = ArmRecorder()
while True:
# joint_position = get_arm_joint_positions()
joint_position = record.qpos
print(f"\nJoint Position:")
# print(f" position: {joint_position:.6f}")
print(joint_position)
# time.sleep(0.5)
数字孪生的real2sim相关的python脚本如下(arm_aloha_real2sim.py):
from pathlib import Path
from typing import Optional, Sequence
import mujoco
import mujoco.viewer
import numpy as np
from loop_rate_limiters import RateLimiter
import mink
from mink.contrib import TeleopMocap
from interbotix_xs_modules.arm import InterbotixManipulatorXS
from interbotix_xs_msgs.msg import JointSingleCommand
from arm_aloha_real_recorder import ArmRecorder
_HERE = Path(__file__).parent
_XML = _HERE / "aloha" / "scene.xml"
# Single arm joint names.
_JOINT_NAMES = [
"waist",
"shoulder",
"elbow",
"forearm_roll",
"wrist_angle",
"wrist_rotate",
]
# Single arm velocity limits, taken from:
# https://github.com/Interbotix/interbotix_ros_manipulators/blob/main/interbotix_ros_xsarms/interbotix_xsarm_descriptions/urdf/vx300s.urdf.xacro
_VELOCITY_LIMITS = {k: np.pi for k in _JOINT_NAMES}
def compensate_gravity(
model: mujoco.MjModel,
data: mujoco.MjData,
subtree_ids: Sequence[int],
qfrc_applied: Optional[np.ndarray] = None,
) -> None:
"""Compute forces to counteract gravity for the given subtrees.
Args:
model: Mujoco model.
data: Mujoco data.
subtree_ids: List of subtree ids. A subtree is defined as the kinematic tree
starting at the body and including all its descendants. Gravity
compensation forces will be applied to all bodies in the subtree.
qfrc_applied: Optional array to store the computed forces. If not provided,
the applied forces in `data` are used.
"""
qfrc_applied = data.qfrc_applied if qfrc_applied is None else qfrc_applied
qfrc_applied[:] = 0.0 # Don't accumulate from previous calls.
jac = np.empty((3, model.nv))
for subtree_id in subtree_ids:
total_mass = model.body_subtreemass[subtree_id]
mujoco.mj_jacSubtreeCom(model, data, jac, subtree_id)
qfrc_applied[:] -= model.opt.gravity * total_mass @ jac
if __name__ == "__main__":
model = mujoco.MjModel.from_xml_path(str(_XML))
data = mujoco.MjData(model)
# Bodies for which to apply gravity compensation.
left_subtree_id = model.body("left/base_link").id
right_subtree_id = model.body("right/base_link").id
# Get the dof and actuator ids for the joints we wish to control.
joint_names: list[str] = []
velocity_limits: dict[str, float] = {}
for prefix in ["left", "right"]:
for n in _JOINT_NAMES:
name = f"{prefix}/{n}"
joint_names.append(name)
velocity_limits[name] = _VELOCITY_LIMITS[n]
dof_ids = np.array([model.joint(name).id for name in joint_names])
actuator_ids = np.array([model.actuator(name).id for name in joint_names])
configuration = mink.Configuration(model)
tasks = [
l_ee_task := mink.FrameTask(
frame_name="left/gripper",
frame_type="site",
position_cost=1.0,
orientation_cost=1.0,
lm_damping=1.0,
),
r_ee_task := mink.FrameTask(
frame_name="right/gripper",
frame_type="site",
position_cost=1.0,
orientation_cost=1.0,
lm_damping=1.0,
),
posture_task := mink.PostureTask(model, cost=1e-4),
]
# Enable collision avoidance between the following geoms.
l_wrist_geoms = mink.get_subtree_geom_ids(model, model.body("left/wrist_link").id)
r_wrist_geoms = mink.get_subtree_geom_ids(model, model.body("right/wrist_link").id)
l_geoms = mink.get_subtree_geom_ids(model, model.body("left/upper_arm_link").id)
r_geoms = mink.get_subtree_geom_ids(model, model.body("right/upper_arm_link").id)
frame_geoms = mink.get_body_geom_ids(model, model.body("metal_frame").id)
collision_pairs = [
(l_wrist_geoms, r_wrist_geoms),
(l_geoms + r_geoms, frame_geoms + ["table"]),
]
collision_avoidance_limit = mink.CollisionAvoidanceLimit(
model=model,
geom_pairs=collision_pairs, # type: ignore
minimum_distance_from_collisions=0.05,
collision_detection_distance=0.1,
)
limits = [
mink.ConfigurationLimit(model=model),
mink.VelocityLimit(model, velocity_limits),
collision_avoidance_limit,
]
l_mid = model.body("left/target").mocapid[0]
r_mid = model.body("right/target").mocapid[0]
solver = "quadprog"
pos_threshold = 5e-3
ori_threshold = 5e-3
max_iters = 5
# Initialize key_callback function.
key_callback = TeleopMocap(data)
with mujoco.viewer.launch_passive(
model=model,
data=data,
show_left_ui=False,
show_right_ui=False,
key_callback=key_callback,
) as viewer:
mujoco.mjv_defaultFreeCamera(model, viewer.cam)
# Initialize to the home keyframe.
mujoco.mj_resetDataKeyframe(model, data, model.key("neutral_pose").id)
configuration.update(data.qpos)
mujoco.mj_forward(model, data)
posture_task.set_target_from_configuration(configuration)
# Initialize mocap targets at the end-effector site.
mink.move_mocap_to_frame(model, data, "left/target", "left/gripper", "site")
mink.move_mocap_to_frame(model, data, "right/target", "right/gripper", "site")
rate = RateLimiter(frequency=200.0, warn=False)
# 在主循环外定义时间计数器和阶段标志
time_step = 0
left_arm_moving = True
right_arm_moving = False
left_gripper_moving = False
right_gripper_moving = False
left_gripper_action = 0.037 # left gripper int qpos
right_gripper_action = 0.037 # right gripper int qpos
while viewer.is_running():
# Update task targets.
l_ee_task.set_target(mink.SE3.from_mocap_name(model, data, "left/target"))
r_ee_task.set_target(mink.SE3.from_mocap_name(model, data, "right/target"))
# Continuously check for autonomous key movement.
key_callback.auto_key_move()
# Compute velocity and integrate into the next configuration.
for i in range(max_iters):
vel = mink.solve_ik(
configuration,
tasks,
rate.dt,
solver,
limits=limits,
damping=1e-5,
)
configuration.integrate_inplace(vel, rate.dt)
l_err = l_ee_task.compute_error(configuration)
l_pos_achieved = np.linalg.norm(l_err[:3]) <= pos_threshold
l_ori_achieved = np.linalg.norm(l_err[3:]) <= ori_threshold
r_err = r_ee_task.compute_error(configuration)
r_pos_achieved = np.linalg.norm(r_err[:3]) <= pos_threshold
r_ori_achieved = np.linalg.norm(r_err[3:]) <= ori_threshold
if (
l_pos_achieved
and l_ori_achieved
and r_pos_achieved
and r_ori_achieved
):
break
data.ctrl[actuator_ids] = configuration.q[dof_ids]
compensate_gravity(model, data, [left_subtree_id, right_subtree_id])
# HJX: mocap control
# 定义分阶段的时间控制
# data.mocap_pos[0] = [-0.18753877, -0.019, 0.32524417] # left init pos
# data.mocap_pos[1] = [0.18753877, -0.019, 0.32524417] # right init pos
mocap_pos_left = data.mocap_pos[0] # left pos
mocap_pos_right = data.mocap_pos[1] # right pos
# print(mocap_pos_left)
mocap_quat_left = data.mocap_quat[0] # left quat
# print(f'mocap_quat_left: {mocap_quat_left}')
mocap_quat_right = data.mocap_quat[1] # right quat
# print(f'mocap_quat_right: {mocap_quat_right}')
# arm qpos
left_arm_action = data.qpos[:6] # left arm qpos
# print(left_arm_action)
right_arm_action = data.qpos[8:14] # right arm qpos
# print(right_arm_action)
# gripper 的运动范围在 0.01 —— 0.037 (0.01表示闭合的最小值,0.037表示张开的最大值)
# left_gripper_action = 0.037 # left gripper int qpos
# right_gripper_action = 0.037 # right gripper int qpos
data.qpos[6:8] = [left_gripper_action, left_gripper_action]
data.qpos[14:16] = [right_gripper_action, right_gripper_action]
left_gripper_qpos = data.qpos[6:8]
# print(left_gripper_qpos)
right_gripper_qpos = data.qpos[14:16]
# print(right_gripper_qpos)
record = ArmRecorder()
arm_joint_position = record.qpos[:6]
# print(arm_joint_position)
gripper_joint_position = record.qpos[7:8] # gripper
# --- 左臂运动阶段 ---
if left_arm_moving:
left_arm_action = arm_joint_position
left_gripper_qpos = gripper_joint_position
# 左臂运动完成后切换阶段
if time_step >= 100:
left_arm_moving = True
right_arm_moving = True
time_step = 0 # 重置计时器
# # --- 右臂运动阶段 ---
# elif right_arm_moving:
# # 随时间步线性移动右臂
# # mocap_pos_right[0] -= 0.001
# # mocap_pos_right[1] -= 0.001
# # mocap_pos_right[2] -= 0.001
# mocap_pos_right -= 0.001
#
# if time_step >= 200:
# left_arm_moving = False
# right_arm_moving = False
# left_gripper_moving = True
# right_gripper_moving = True
# time_step = 0 # 重置计时器
# 应用更新后的 Mocap 位置
data.mocap_pos[0] = mocap_pos_left
data.mocap_pos[1] = mocap_pos_right
# 应用更新后的 Mocap 姿态
data.mocap_quat[0] = mocap_quat_left
data.mocap_quat[1] = mocap_quat_right
# 应用更新后的 arm qpos
data.qpos[:6] = left_arm_action # left arm qpos
data.qpos[8:14] = right_arm_action # right arm qpos
data.qpos[6:8] = left_gripper_qpos # left gripper qpos
data.qpos[14:16] = right_gripper_qpos # right gripper qpos
# 物理仿真步进
mujoco.mj_step(model, data)
# Visualize at fixed FPS.
viewer.sync()
rate.sleep()
# 更新计时器
time_step += 1
运行arm_aloha_real2sim.py代码,效果如下:
可以看到,机械臂的动作和真实世界中的机械臂保持一致了,成功!
后续的研究就可以用真实机械臂来采集仿真环境中的操作数据了,over~~~
创作不易,感谢您的点赞与关注~~~