四、半导体载流子的平衡态统计分布
4.2.1 费米-狄拉克(Fermi-Dirac)分布函数和玻尔兹曼(Boltzmann)分布函数
4.1 状态密度
4.1.1 三维情况下的自由电子气
将电子困在一个边长为L的立方体里
三维情况下自由粒子遵守薛定谔方程,ψ(r)是电子波函数
要求波函数是x,y,z的周期性函数,则需要满足周期性条件
这也就可以解释,为什么k空间中,一个允许波矢所需要的最小体积是(2π)³/V
若考虑电子的自旋,则k空间的态密度是2V/(2π)³
4.1.2 能量状态密度

同理可得价带顶
注意:
(1)最后得到的结果并不是约化普朗克常量
(2)状态密度与能量呈抛物线关系
(3)有效质量越大,状态密度也就越大
(4)仅适用于能带极值附近
一般的,晶体是各向异性的,因此其等能面是椭球面。

导带:
价带:
硅与锗的价带,极值在k=0,分重空穴和轻空穴两支能带
在一维,二维,三维情况下的g(E)-E关系
4.2 费米能级和载流子统计分布
4.2.1 费米-狄拉克(Fermi-Dirac)分布函数和玻尔兹曼(Boltzmann)分布函数

费米能级(Ef):费米能级标志了电子填充水平,反映半导体的导电类型和参杂水平
4.2.2 导带电子和价带空穴浓度
从图上就可以看出,电子真正在的区域仅仅是导带底的一小块,而导带大部分仍是空的
价带同理
——g(E)dE可以理解为是单位能量间隔内的空房间数,这些空房间按照f(E)的分布方式给电子占
据
——m e * , m h * , Eg 和 T 有关,与 EF 或掺杂浓度无关(前三项只与材料有关)
——无论本征半导体还是杂质半导体,只要是热平衡状态的非简并半导体,都适用!
4.3 本征半导体载流子浓度的统计
4.3.1 本征载流子浓度
——电中性条件:n=p=ni
在室温下(300K) 本征载流子浓度(300K) 极限工作温度(ni<5x10^14)
Ge:0.67eV ni=2.4x10^13n 370K
Si:1.12eV ni=1.5x10^10 520K
GaAs:1.43eV ni=1.1x10^7 720k(高温半导体)
4.3.2 本征费米能级位置
电中性条件n=p
mdp和mdn同数量级,所以第二项是一个比较小的负值,可以忽略。因此我们说:本征费米能级Ei基本上在禁带中线处。
4.4 杂质半导体载流子统计
4.4.1 单一杂质情形
术语定义:
求解载流子浓度思路:写电中性方程,只要T确定了,Ef也就确定,n0 p0也就确定了
4.4.2 杂质补偿
(从上式可以看出,仅有温度和Ef是未知的)
1)在低温弱点离区,Ef钉扎在ED附近,此时的电中性方程可以写为
ND=n0+NA+nD:施主电子一部分用于补偿受主能级,一部分用于导带导电,一部分留在施主能级上
2)强电离区:ND - NA >> ni
3)过渡区(考虑本征激发)
4.5 简并半导体
——简并化:参杂浓度过高,费米能级进入导带。杂志不能完全电离,需要考虑泡利不相容原理。随着掺杂浓度升高,费米能级的极大值点对应的温度
值也会升高。
——简并判据:
——强简并条件(定量)
——禁带变窄效应:简并半导体中杂志能及扩展为能带并进入导带,与导带相连,形成新的简并导带,使能带边缘延伸,导致禁带宽度变窄。本征载流子浓度因禁带变窄而增加