朴素做法(公式法)
适用于数据较小的时候
时间复杂为n方
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 2010,mod = 1e9 + 7;
int c[N][N];
void init()
{
for(int i = 0;i < N;i ++)
for(int j = 0;j <= i;j ++)
if(!j)c[i][j] = 1;
else c[i][j] = (c[i - 1][j] + c[i][j - 1]) % mod;
}
int main()
{
int n;
init();
cin >> n;
while(n --)
{
int a, b;
cin >> a >> b;
cout << c[a][b] << endl;
}
return 0;
}
用快速幂求逆元 在利用公式求解
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long LL;
const int N = 100010,mod = 1e9 + 7;
int fact[N],infact[N];
int qmi(int a,int b,int p)// 快速幂求逆元
{
int res = 1;
while(b)
{
if(b & 1)res = res *(LL) a % p;
a = a *(LL)a % p;
b >>= 1;
}
return res;
}
int main()
{
fact[0] = infact[0] = 1;
for(int i = 1;i < N;i ++)
{
fact[i] = (LL)fact[i - 1] * i % mod;
infact[i] = (LL)infact[i - 1] * qmi(i , mod - 2, mod) % mod;
}
int n;
cin >> n;
while(n --)
{
int a,b ;
cin >> a >> b;
//求组合数公式
printf("%lld\n",(LL)fact[a] * infact[b] % mod * infact[a - b] % mod);
}
return 0;
}