司守奎《数学建模算法与应用》第二版 第一章线性规划1.2

本文展示了如何使用Python的Scipy库中的`linprog`函数解决线性规划问题,通过给定的目标函数矩阵f和线性不等式约束A和b,找到使目标函数最小化的最优解。
摘要由CSDN通过智能技术生成

司守奎《数学建模算法与应用》第二版 第一章线性规划1.2

在这里插入图片描述

from scipy.optimize import linprog
import numpy as np

if __name__ == "__main__":
    f = np.array([[-2, -3, 5]])
    A = np.array([[-2,5,-1],[1,3,1]])
    b = np.array([[-10,12]]).T
    Aeq = np.array([[1,1,1]])
    beq = 7
    lb = np.zeros(3)
    ub = np.array([None]*3)
    bound = np.vstack((lb, ub)).T
    res = linprog(f,A,b,Aeq,beq,bound)

    print("显示目标函数的最小值", res.fun)
    print("最优解为",res.x)
# output:显示目标函数的最小值 -14.571428571428571
# 最优解为 [6.42857143 0.57142857 0.        ]
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值