统计学习方法(九):EM算法

  • 非监督学习、生成模型
  • EM算法应用场景:含有隐变量的参数估计问题
  • EM解析(以高斯分布为例):
    • 假设有一批数据x。
    • x可能满足多种不同的模型,这些模型的分布服从高斯分布的概率密度函数形式(高斯混合模型)。这时,问题中就包含了三个变量:取到某种模型的概率w,以及在该高斯分布下的参数μ和 σ \sigma σ。我们最终求的是最好的模型的参数μ和 σ \sigma σ,所以取到某种模型的概率w就相当于是隐变量。
    • 若根据极大似然估计方法,该问题求解可以描述为:
      • 设有x个数据,表示为: x i x_{i} xi,i从1到N。
      • 设高斯分布的概率密度函数为 f ( μ , σ ) f(\mu,\sigma) f(μ,σ) ,有j个类型的模型,他们概率表示为 f ( μ j , σ j ) f(\mu_{j},\sigma_{j}) f(μj,σj),且每个取到的的概率为 w j w_{j} wj
      • 那么对每一个数据x而言,其总的概率就可以表示为:
        ∑ j = 1 K W j f j ( x i ) \sum_{j=1}^{K} W_{j} f_{j}\left(x_{i}\right) j=1KWjfj(xi)
      • 那么所有的数据满足模型的概率就为(该式也就是极大似然估计):
        max ⁡ ∏ i = 1 n [ ∑ j = 1 k w j f j ( x i ) ] \operatorname{max} \prod_{i=1}^{n}\left[\sum_{j=1}^{k} w_{j} f_{j}\left(x_{i}\right)\right] maxi=1n[j=1kwjfj(xi)]
      • 转换为极大似然估计的log形式就为:
        max ⁡ ∑ i = 1 n log ⁡ ( ∑ j = 1 k w j f j ( x i ) ) \max \sum_{i=1}^{n} \log \left(\sum_{j=1}^{k} w_{j} f_{j}\left(x_{i}\right)\right) maxi=1nlog(j=1kwjfj(xi))
    • 对于上式来说,依旧很难求解,所以EM算法采用了迭代的方式来做。
    • 首先初始化该问题中的三个参数: μ 0 , σ 0 , w 0 \mu_{0},\sigma_{0},w_{0} μ0,σ0,w0
    • 然后求解 w j w_{j} wj(每一个模型的分布系数),i指代某个x:
      W 1 = ∑ i = 1 n W i 1 n W_{1}=\frac{\sum_{i=1}^{n} W_{i 1}}{n} W1=ni=1nWi1
    • 再求解 μ 1 \mu_{1} μ1:
      μ 1 = ∑ i = 1 n w i 1 x i ∑ i = 1 n w i 1 \mu_{1}=\frac{\sum_{i=1}^{n} w_{i 1} x_{i}}{\sum_{i=1}^{n} w_{i 1}} μ1=i=1nwi1i=1nwi1xi
    • 再求解 σ 1 \sigma_{1} σ1:
      σ 1 = ∑ i = 1 n ω i 1 ( x i − μ 1 ) ∑ i = 1 n w i 1 {\sigma_{1}}=\frac{\sum_{i=1}^{n} \omega_{i 1}\left(x_{i}-\mu_{1}\right)}{\sum_{i=1}^{n} w_{i 1}} σ1=i=1nwi1i=1nωi1(xiμ1)
    • 至此,求出了迭代一次的参数值。
    • 继续迭代,会发现参数趋于收敛,这时停下来,完成EM算法。
  • 一般性的:EM算法的E步,也就是求期望过程,求的是根据数据和当前参数对隐变量的期望的估计。
    EM算法的M步,是迭代数据和当前参数,求E步期望最大的过程。
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值