Vision Transformer(ViT)模型原理及PyTorch逐行实现

Vision Transformer(ViT)模型原理及PyTorch逐行实现

一、TRM模型结构

1.Encoder

  1. Position Embedding 注入位置信息
  2. Multi-head Self-attention 对各个位置的embedding融合(空间融合)
  3. LayerNorm & Residual
  4. Feedforward Neural Network 对每个位置上单独仿射变换(通道融合)
    • Linear1(large)
    • Linear2(d_model)
  5. LayerNorm & Residual

2.Decoder

  1. Position Embedding
  2. Casual Multi-head Self-attention
  3. LayerNorm & Residual
  4. Memory-base Multi-head Cross-attention
  5. LayerNorm & Residual
  6. Feedforward Neural Network
    • Linear1(large)
    • Linear2(d_model)
  7. LayerNorm & Residual

二、TRM使用类型

  1. Encoder only 【 ViT 所使用的】
    • BERT、分类任务、非流式任务
  2. Decoder only
    • GPT系列、语言建模、自回归生成任务、流式任务
  3. Encoder-Decoder
    • 机器翻译、语音识别

三、TRM特点

  1. 无先验假设(例如:局部关联性、有序建模性)
  2. 核心计算在于自注意力机制,平方复杂度
  3. 数据量的要求与归纳偏置【人类通过归纳法得到的经验,把这些经验带入到模型中,很多事物的共性】的引入成反比

四、Vision Transformer(ViT)

  1. DNN perspective 图像的信息量主要还是聚集在一块区域上
    • image2patch 将图片切分成很多个块
    • patch2embedding 将每个块转换为向量
  2. CNN perspective 从卷积的角度得到向量
    • 2D convolution over image 二维卷积
    • flatten the output feature map 把输出的卷积图拉直
  3. class token embedding 占位符
  4. position embedding
    • interpolation when inference
  5. Transformer Encoder 只使用的Encoder
  6. classification head 最后分类

五、ViT论文讲解

image-20240908092056541

​ 首先将一副图片分为很多个块,每个块的大小都是不会变化的,图片即使大一点,只是序列更长一点。先左到右,再上到下,把图片拉直成一个序列的形状。把每个块中的像素点进行归一化,范围变为0到1之间,再把块里面的所有值通过一个线性变换映射到模型的维度,得到patchembedding,得到以后,我们为了做分类任务,还需要在序列的开头加上一个可训练的embedding,这个是随机初始化的。这样就构造出了一个n+1长度的序列,然后我们再加入position embedding,加上后的这个序列的表征就可以送入到TRM的encoder当中,最后取出结果中的我们加入的可训练的embedding位置上的值(输出状态),经过一个MLP,得到各个类别的概率分布,再通过一个交叉熵函数算出分类的loss,这样就完成了一个ViT模型的搭建。

六、代码实现

1.convert image to embedding vector sequence

1.通过DNN实现

import torch
import torch.nn as nn
import torch.nn.functional as F

def image2emb_naive(image,patch_size,weight):
    # image shape: bs*channel*h*w
    patch = F.unfold(image,kernel_size=patch_size,stride=patch_size).transpose(-1,-2)
    patch_embedding = patch @ weight
    return patch_embedding

# test code for image2emb
bs,ic,image_h,image_w=1,3,8,8
patch_size=4 # 每个块的大小为4*4(自定义)
model_dim=8 #将每个块映射成长度为8的向量(自定义)
patch_depth=patch_size*patch_size*ic
image=torch.randn(bs,ic,image_h,image_w) #初始化
weight=torch.randn(patch_depth,model_dim)#初始化

patch_embedding_navie=image2emb_navie(image,patch_size,weight)
print(patch_embedding_naive.shape) # [1,4,8],分成四块了,每块对应一个长度为8的向量 

2.通过CNN实现

import torch
import torch.nn as nn
import torch.nn.functional as F

def image2emb_conv(image,kernel,stride):
    conv_output=F.conv2d(image,kernel,stride=stride) # bs*oc*oh*ow
    bs,oc,oh,ow=conv_output.shape
    patch_embedding=conv_output.reshape((bs,oc,oh*ow)).transpose(-1,-2)
    return patch_embedding

# test code for image2emb
bs,ic,image_h,image_w=1,3,8,8
patch_size=4
model_dim=8
patch_depth=patch_size*patch_size*ic
image=torch.randn(bs,ic,image_h,image_w)
weight=torch.randn(patch_depth,model_dim) #model_dim是输出通道数目,patch_depth是卷积核的面积乘以输入通道数

kernel=weight.transpose(0,1).reshape((-1,ic,patch_size,patch_size)) # oc*ic*kh*kw
patch_embedding_conv=image2emb_conv(image,kernel,patch_size) # 二维卷积的方法得到embedding

2.prepend CLS token embedding

cls_token_embedding = torch.randn(1,model_dim,requires_grad=True)
token_embedding = torch.cat([[bs,cls_token_embedding],patch_embedding_conv],dim=1)

​ 提问:本身cls_token_embedding没有和任何样本矩阵有乘法联系,最后训练出来的也是一张确定的表,在做inference的时候,完全是一个常数的作用。送入transformer后,又与其他矩阵做了MHA,没搞懂用意何在啊?

​ 答:有联系啊,就是与其他时刻的sample做MHSA。这个token其实是取代了avg pool的作用,也就是说,你可以用avg pool得到分类的logits,也可以用采用cls token来得到分类的logits

注意:cls_token_embedding作为batch_size中每一个序列的开始,应该对于每一个序列的开始都torch.cat同样的一个cls_token_embedding,然后都是对这同一个cls_token_embedding进行训练,所以这里的cls token embedding应该是二维的,1*model_dim,与batchsize无关。

3.add position embedding

max_num_token=16 #自定义
position_embedding_table = torch.randn(max_num_token,model_dim,requires_grad=True)
seq_len=token_embedding.shape[1] # 刚刚的1+4
position_embedding=torch.tile(position_embedding_table[:seq_len],[token_embedding.shape[0],1,1]) # 5,bs,1,1
token_embedding += position_embedding

4.pass embedding to Transformer Encoder

encoder_layer = nn.TransformerEncoderLayer(d_model=model_dim,nhead=8)
transformer_encoder=nn.TransformerEncoder(encoder_layer,num_layers=6)
encoder_output=transformer_encoder(token_embedding)

5.do classification

cls_token_output=encoder_output[:,0,:] #拿到TRM的输出值
num_classes=10 # 自定义的类别数目
label=torch.randint(10,(bs,)) # 自定义的生成的label
linear_layer = nn.Linear(model_dim,num_classes) 
logits = linear_layer(cls_token_output)
loss_fn=nn.CrossEntropyLoss()
loss=loss_fn(logits,label)
print(loss)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Li小李同学Li

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值