安装远程linux CUDA11.3对应的pytorch

conda create -n 【env_name】python=3.8

pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 torchaudio==0.12.1 --extra-index-url https://download.pytorch.org/whl/cu113  -i https://pypi.tuna.tsinghua.edu.cn/simple

其他版本可参考:https://pytorch.org/get-started/previous-versions/

.bashrc文件中添加:

# <<< conda initialize <<<
export PATH=/home/xxxxxxxxxxxxxxxxxxxxxxxxxxx/anaconda3/bin:$PATH
export CUDA_ROOT=/usr/local/cuda-11.3${CUDA_ROOT:+:${CUDA_ROOT}}
export PATH=/usr/local/cuda-11.3/bin${PATH:+:${PATH}}
export LD_LIBRARY_PATH=/usr/local/cuda-11.3/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}

(xxxxxxxx)修改为用户名

修改后执行

source ~/.bashrc


 

在Jupyter Notebook中使用PyTorch,你需要按照以下步骤进行操作: 1. 首先,在终端中运行命令创建一个虚拟环境,并安装PyTorch和相应的依赖。可以使用以下命令: ``` conda create -n pytorch-gpu python=3.7.0 conda activate pytorch-gpu conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch ``` 2. 如果你觉得通过以上命令安装速度较慢,你可以选择离线下载PyTorch和torchvision的whl文件,然后在虚拟环境中安装。具体步骤如下: - 访问PyTorch官方网站(https://download.pytorch.org/whl/cu113/torch_stable.html)。 - 在页面中搜索你需要的PyTorch和torchvision版本,并下载对应的whl文件。 - 将下载的whl文件传输到你的离线主机(服务器)中。 - 在已经创建好的虚拟环境中,使用pip命令安装whl文件。例如: ``` pip install torch-1.10.0 cu113-cp37-cp37m-linux_x86_64.whl pip install torchvision-0.11.1 cu113-cp37-cp37m-linux_x86_64.whl ``` 3. 在Jupyter Notebook中验证PyTorch是否安装成功。打开Jupyter Notebook,在一个代码单元格中输入以下代码并运行: ``` import torch print(torch.__version__) print(torch.cuda.is_available()) import torchvision print(torchvision.__version__) ``` 这样就完成了在Jupyter Notebook中使用PyTorch安装和验证步骤。你可以在Jupyter Notebook中继续编写和运行PyTorch代码了。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [安装pytorch成功但是在jupyter notebook中无法使用的问题](https://blog.csdn.net/qq_39033580/article/details/124249528)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *2* *3* [Jupyter Notebook与Pycharm代码连接Docker容器中的远程服务器运行](https://blog.csdn.net/qq_43966129/article/details/126843082)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

歪比巴卜(「・ω・)「

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值