Games101 ---2

本文概述了向量的性质,包括单位向量、向量相加、点乘及其在角度计算中的作用,以及矩阵的乘法、转置、向量矩阵化等关键概念。涵盖了向量投影、叉乘和其在空间几何中的应用,以及矩阵在方向变化和坐标系创建中的运用。
摘要由CSDN通过智能技术生成

Games101 —2

向量

特征:有方向 有长度

单位向量

e ⃗ = a ⃗ ∣ b ⃗ ∣ \vec e =\frac {\vec a}{|\vec b|} e =b a

向量相加

坐标对应单位向量方向上的值相加
使用三角形定理平行四边形定理

请添加图片描述

向量矩阵化

a ⃗ = { x y } \vec a = \begin{Bmatrix} x\\ y \\ \end{Bmatrix} a ={xy}

向量矩阵的转置

a ⃗ T = { x y } \mathbf{\vec a}^\mathrm{T}=\begin{Bmatrix}x&y\end{Bmatrix} a T={xy}

两个向量的点乘

a ⃗ ∗ b ⃗ = ∣ a ⃗ ∣ ∣ b ⃗ ∣ cos ⁡ θ \vec a *\vec b=|\vec a| |\vec b|\cos\theta a b =a b cosθ

满足交换律 结合律 分配律请添加图片描述

请添加图片描述

点乘的矩阵表示

a ⃗ ∗ b ⃗ = { x a y a } { x b y b } = x a ∗ x b + y a ∗ y b \vec a*\vec b=\begin{Bmatrix}xa&ya\end{Bmatrix}\begin{Bmatrix}xb\\yb\end{Bmatrix}=xa*xb +ya*yb a b ={xaya}{xbyb}=xaxb+yayb
a ⃗ ∗ b ⃗ = { x a y a z a } { x b y b z b } = x a ∗ x b + y a ∗ y b + z a ∗ z b \vec a*\vec b =\begin{Bmatrix}xa&ya&za\end{Bmatrix}\begin{Bmatrix}xb\\yb\\zb\end{Bmatrix}=xa*xb+ya*yb+za*zb a b ={xayaza}xbybzb=xaxb+yayb+zazb

点乘的一些用途

1.点乘最大的用处就是找到两个向量的夹角
2.点乘可以判断两个向量有多接近
3.点乘可以告诉我们两个向量的方向是否相反

向量的投影

向 量 b ⃗ 投 影 到 a ⃗ 的 长 度 为 ∣ b ⃗ ∣ ∗ cos ⁡ θ 向量\vec b投影到\vec a的长度为|\vec b|*\cos\theta b a b cosθ
cos ⁡ θ = a ⃗ ∗ b ⃗ ∣ a ⃗ ∣ ∣ b ⃗ ∣ \cos\theta=\frac {\vec a*\vec b}{|\vec a||\vec b|} cosθ=a b a b 请添加图片描述

向量的叉乘(Vector Multiplication)

1.两个向量 a b 的叉乘 运算结果是一个向量而不是标量
且该向量与这两个向量a b 的方向垂直
2.该叉乘得到的向量用右手定则判定
大 小 为 ∣ a ⃗ ∣ ∣ b ⃗ ∣ sin ⁡ θ 大小为|\vec a||\vec b|\sin\theta a b sinθ
3 a ⃗ ∗ b ⃗ = − b ⃗ ∗ a ⃗ \vec a*\vec b=-\vec b*\vec a a b =b a 请添加图片描述

右手坐标系

三维坐标系中,如果 X ∗ Y = + Z X*Y =+Z XY=+Z,则该坐标系为右手坐标系

叉乘运算

a ⃗ = { x a y a z a } b = { x b y b z b } \vec a=\begin{Bmatrix}xa\\ya\\za\end{Bmatrix} b=\begin{Bmatrix}xb\\yb\\zb\end{Bmatrix} a =xayazab=xbybzb
a ⃗ ∗ b ⃗ = { y a ∗ z b − y b ∗ z a z a ∗ x b − x a ∗ z b x a ∗ y b − y a ∗ x b } \vec a*\vec b=\begin{Bmatrix}ya*zb-yb*za\\za*xb-xa*zb\\xa*yb-ya*xb\end{Bmatrix} a b =yazbybzazaxbxazbxaybyaxb请添加图片描述

叉乘的用途

1.叉乘可以判定一个向量在另一个向量的左右
2.叉乘可以判定一个点是否在一个封闭的面里
注:如果点刚好在面的边上,可自行决定是否在面上
3.点乘可以创建坐标系

矩阵(Matrices)

矩阵的乘法

设A为a行b列的矩阵,B为c行d列的矩阵
1.只有b = c的两个矩阵才能相乘
2.没用交换律 有结合律和分配律

矩阵的一些运用

1.可以使用矩阵乘向量,使向量的方向改变

矩阵的转置

1.行变列 列变行
A = { 1 2 3 } A=\begin{Bmatrix}1&2&3\end{Bmatrix} A={123}
A T = { 1 2 3 } \mathbf{A}^\mathrm{T}=\begin{Bmatrix}1\\2\\3\end{Bmatrix} AT=123
2. ( A ∗ B ) T = B T ∗ A T \mathbf{(A*B)}^\mathrm{T}=\mathbf{B}^\mathrm{T}*\mathbf{A}^\mathrm{T} (AB)T=BTAT

单位矩阵

I(3x3)= { 1 0 0 0 1 0 0 0 1 } \begin{Bmatrix}1&0&0\\0&1&0\\0&0&1\end{Bmatrix} 100010001

向量转化为矩阵进行运算

请添加图片描述
使用特殊的矩阵进行向量的反向

点乘(Dot product): A ∗ B = A T ∗ B = { x a y a z a } ∗ { x b y b z b } A*B=\mathbf{A}^\mathrm{T}*B=\begin{Bmatrix}xa&ya&za\end{Bmatrix}*\begin{Bmatrix}xb\\yb\\zb\end{Bmatrix} AB=ATB={xayaza}xbybzb
叉乘(Cross product)…

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值