05转置和向量空间

进入了向量空间才算开始了线性代数的大门。几个重要的概念:

  • 列空间包含所有列向量的线性组合,记作 C ( A ) C(A) C(A)
  • 当且仅当 b b b A A A的列空间时, A X = b AX=b AX=b才有解;

对于一个 m × n m\times n m×n 的系数矩阵 A A A,如果矩阵给的信息充足(也就是全都是对应列向量线性无关),那么列空间的维度应该等于行数;当然如果存在线性相关的列向量,列空间就会变成小于行数维度的子空间。

一、置换(Permutation)矩阵和对称(Symmetrix)矩阵

1.1 置换矩阵及其性质

置换矩阵适用于执行行交换的,它是由单位矩阵交换一次得到的矩阵。需要对上一节讲到的 A = L U A=LU A=LU分解进行一个补充,一个矩阵 L U LU LU L L L 的特征非常明显,它是进行的行变换的直观矩阵:
A = L U = [ 1 0 0 0 X 1 0 0 X X 1 0 X X X 1 ] [ 1 X X X 0 1 X X 0 0 1 X 0 0 0 1 ] A=LU=\begin{bmatrix} 1&0&0&0\\ X&1&0&0\\ X&X&1&0\\ X&X&X&1 \end{bmatrix}\begin{bmatrix} 1&X&X&X\\ 0&1&X&X\\ 0&0&1&X\\ 0&0&0&1 \end{bmatrix} A=LU= 1XXX01XX001X0001 1000X100XX10XXX1 如果考虑行交换,那么一个可逆矩阵的 A A A更广泛的消元过程应该表示为: P A = L U PA=LU PA=LU,Permutation矩阵的性质:

  • 性质1:置换矩阵 P P P 是可逆的,每次可以行交换,当然可以再交换回去;
  • 性质2:置换矩阵 P − 1 = P T P^{-1}=P^T P1=PT,交换回去的那个矩阵就是置换矩阵的逆;

考虑下面的具体例子:
P = [ 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 ] P T = [ 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 ] P=\begin{bmatrix} 1&0&0&0\\ 0&0&1&0\\ 0&1&0&0\\ 0&0&0&1\\ \end{bmatrix}\quad P^T=\begin{bmatrix} 1&0&0&0\\ 0&0&1&0\\ 0&1&0&0\\ 0&0&0&1\\ \end{bmatrix} P= 1000001001000001 PT= 1000001001000001 它是一个单位矩阵第二和第三行的交换。 P P T = I PP^T=I PPT=I必然成立!

1.2 转置矩阵及其性质

转置矩阵的数学表达
( A T ) i j = A j i (A^T)_{ij}=A_{ji} (AT)ij=Aji
对称矩阵(Symmetrix)的定义
A T = A A^T=A AT=A数字是最直观的,一个对称阵 A A A应该是:
A = [ 3 1 7 1 2 9 7 9 4 ] A=\begin{bmatrix}3&1&7\\1&2&9\\7&9&4\end{bmatrix} A= 317129794
性质:一个对称矩阵具有转置不变性。我们可以如何获取一个转置矩阵?答案是 R R T RR^T RRT!矩阵总是可以乘以其转置,举个例子:
[ 1 3 2 3 4 1 ] [ 1 2 4 3 3 1 ] = [ 10 11 7 11 13 11 7 11 17 ] \begin{bmatrix} 1&3\\ 2&3\\ 4&1 \end{bmatrix}\begin{bmatrix} 1&2&4\\ 3&3&1\\ \end{bmatrix}= \begin{bmatrix}10&11&7\\11&13&11\\7&11&17\end{bmatrix} 124331 [132341]= 1011711131171117 这个是显然的,因为 ( R R T ) T = ( R T ) T R T = R R T (RR^T)^T=(R^T)^TR^T=RR^T (RRT)T=(RT)TRT=RRT。转置等于其本身,符合转置矩阵的定义。

二、向量空间和子空间

定义: R n R^n Rn空间是所有 n n n个分量列向量的组合 R 5 R^5 R5表示的是五个分量的列向量集合,如
[ 3 4 8 1 6 ] [ 3 4 − 1 3 2 ] \begin{bmatrix} 3\\4\\8\\1\\6 \end{bmatrix}\quad \begin{bmatrix}3\\4\\-1\\3\\2 \end{bmatrix} 34816 34132
如果你能枚举所有的这样的向量,那么这个集合组成的就是 R n R^n Rn空间。或者你也可以这么理解,空间的一个点所能表达的最小坐标数。

2.1 向量空间

向量空间是向量集合,在向量集合满足一定规则的向量称为子空间。

子空间是一系列满足一定运算规则构成的所有向量集,这个规则是满足以下条件,

  • 任取向量空间中的两个向量 v v v w w w v + w v+w v+w仍然在这个空间;
  • 任取一个标量 c c c c v cv cv属于这个空间;

换句话说,所有向量线性组合都是在子空间。

R 2 R^2 R2就是一个空间向量,其向量集合是所有二维实向量,对于其中的如:
[ 3 2 ] [ 0 0 ] [ π e ] \begin{bmatrix}3\\2\end{bmatrix}\quad \begin{bmatrix}0\\0\end{bmatrix}\quad \begin{bmatrix}\pi\\e\end{bmatrix} [32][00][πe]无论我们这些二维实向量做何线性运算,其结果仍然在空间 R 2 R^2 R2内。

在这里插入图片描述
R 2 R^2 R2空间就是平面空间,随意选取平面上向量集合,如截取 R 2 R^2 R2平面一部分:第一象限,这个平面是否是空间向量呢?不是的,画个图看看:
在这里插入图片描述
w = u − v w=u-v w=uv显然已经不在指定的第一象限,不符合向量空间的定义。

2.2 子空间

前面在 R 2 R^2 R2空间划取第一象限不是一个向量空间。那么在一个向量空间中任意划取一部分,是否有可能组成一个向量空间?答案是肯定的!!如一个过原点的直线空间!
在这里插入图片描述
我们随便在蓝色的空间任意选取一个点组成向量,无论我们如何线性组合它仍然属于这个蓝色区域,符合向量空间的定义!能够再举一个例子吗?当然可以,如零向量空间,不过逆只能取到一个向量,零向量的线性组合仍然是零向量。ok!至此,我们找到了 R 2 R^2 R2所有的三种子空间(线面)都被我们找到了!

对于 R 3 R^3 R3也是一个向量空间,三个实数构成一个向量,向量间的线性运算并不会离开 R 3 R^3 R3空间,如:
[ 3 2 1 ] [ 0 0 0 ] [ π e 4 ] \begin{bmatrix}3\\2\\1\end{bmatrix}\quad \begin{bmatrix}0\\0\\0\end{bmatrix}\quad \begin{bmatrix}\pi\\e\\4\end{bmatrix} 321 000 πe4 在这里插入图片描述
同样的我们也对 R 3 R^3 R3的子空间,进行查找。第一个,过原点的平面:
在这里插入图片描述
在这个平面上任取向量进行线性组合,其结果仍然再这个平面上,是一个子空间。
过原点的直线:
在这里插入图片描述
显然,同理,它是一个子空间。最后,原点,也是一个子空间。

为什么 R 2 R^2 R2 R 3 R^3 R3的子空间都包含零向量?对于更高维度的子空间是否也包含零向量?原因很简单,如果你是一个向量空间,任取一个向量 v v v,对于任意实数必须有: k v kv kv成立,如果我们取 k = 0 k=0 k=0,他就是一个零向量!这也说明,如果一个空间连零向量都没有那他一定不是向量空间。

2.3 矩阵的列空间

矩阵的列向量的所有的线性组合必然在某个向量空间中,我们将列向量的线性组合的所有可能称为矩阵的列空间。举个例子:
[ 1 3 2 3 4 1 ] \begin{bmatrix} 1&3\\ 2&3\\ 4&1 \end{bmatrix} 124331 这个矩阵构成的在这里插入图片描述
矩阵的列空间是一个过原点的 R 3 R^3 R3子空间:平面。当然如果列向量是一个共线向量,那么子空间则是过原点的 R 3 R^3 R3子空间:直线。我们矩阵列构成的空间称为矩阵到列空间,记作 C ( A ) C(A) C(A)

2.4 向量空间具体的定义

V V V是一个非空集合, R \mathbb{R} R为实数域。如果在 V V V中定义了一个加法,即对于任意两个元素 α , β ∈ V \alpha,\beta\in V α,βV,总有唯一的一个元素 γ ∈ V \gamma \in V γV与之对应,称为 α \alpha α β \beta β的和,记为 γ = α + β \gamma =\alpha+\beta γ=α+β;在 V V V中又定义了一个数与元素的乘法(简称数乘),即对于任一数 λ ∈ R \lambda \in \mathbb{R} λR与任一元素 α ∈ V \alpha\in V αV,总有唯一的一个元素 δ ∈ V \delta\in V δV与之对应,称为 λ \lambda λ α \alpha α的数量乘积,记作: δ = λ α \delta=\lambda\alpha δ=λα,并且这两中运算满足以下八大运算规律(设 α \alpha α β \beta β γ \gamma γ ∈ \in V V V λ \lambda λ μ \mu μ ∈ \in R \mathbb{R} R):

  • α + β = β + α \alpha+\beta=\beta+\alpha α+β=β+α
  • ( α + β ) + γ = α + ( β + γ ) (\alpha+\beta)+\gamma=\alpha+(\beta+\gamma) (α+β)+γ=α+(β+γ)
  • V V V中存在零元素 0 0 0,对任何 α ∈ V \alpha\in V αV,都有 α + 0 = α \alpha+0=\alpha α+0=α

!!!向量空间必须包含零空间

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 特征向量乘以自己的转置是一个矩阵运算,表示将该特征向量转化为一个矩阵后,将其与该矩阵的转置相乘的结果。这个结果是一个方阵,其对角线上的元素是特征向量各个分量的平方和,非对角线上的元素则表示特征向量各个分量之间的乘积和。特征向量乘以自己的转置在许多数学和科学领域都有着广泛的应用,例如矩阵分解、信号处理、统计学、机器学习等。 ### 回答2: 特征向量乘以自己的转置是一种特殊的矩阵运算,其意义在于将一个特征向量转化为一个特殊的矩阵。该转换的结果称为特征矩阵。 特征向量指的是在特定线性变换下只发生伸缩变化但方向不变的向量。对于一个n维的特征向量,将其乘以自己的转置即可得到一个n×n的特征矩阵。 特征矩阵具有以下特点: 1. 特征矩阵是一个对称矩阵,即其主对角线上的元素相等,其余元素关于主对角线对称。 2. 特征矩阵的主对角线上的元素就是对应的特征向量的模的平方。 特征矩阵在线性代数和矩阵分析中有着广泛的应用,具体应用包括: 1. 特征矩阵可以用来求解线性方程组,特别是当特征矩阵是对角矩阵时,可以很容易地求出方程组的解。 2. 在特征值分解中,特征矩阵是求解特征值和特征向量的重要工具。通过对特征矩阵进行特征值分解,可以得到矩阵的特征值和对应的特征向量。 3. 特征矩阵还可以用于求取矩阵的迹(trace)和行列式(determinant)等重要的矩阵性质。 总之,特征向量乘以自己的转置形成的特征矩阵在数学和应用的领域中扮演着重要的角色,具有广泛的应用和意义。 ### 回答3: 特征向量乘以自己的转置是一个重要的矩阵运算,在线性代数和矩阵理论中具有重要的意义。假设给定一个n维矩阵A,其中的特征向量为v,那么v的转置可以表示为v^T。 特征向量乘以自己的转置结果的意义如下: 1. 长度:特征向量是单位长度的,即||v||^2=1。因此,v乘以其转置结果为单位矩阵I。 将其转置结果的每个元素相乘,并相加的结果为1。这可以看作是长度的特征。 2. 投影:特征向量转置和自己的乘积可以理解为特征向量在一个正交基向量上的投影。 对于任何向量x,将x乘以v的转置,可以得到一个新的向量y。y是将x投影到特征向量v所张成的空间上的结果。 这个投影的结果是特征向量在在空间中的方向与x的夹角的余弦。因此,特征向量转置结果可以表示空间中的投影。 3. 相似性:特征向量转置和自己的乘积的结果通常被用来判断两个向量之间的相似性。 如果两个向量相似,意味着它们在很多方面上非常接近,有着相同的特征值和特征向量。 特征向量乘以自己的转置结果可以用来衡量两个向量之间的相似性,从而在数据挖掘和机器学习中得到广泛应用。 总之,特征向量乘以自己的转置是一个重要的矩阵运算,可以用来表示长度、投影和相似性等特征。这个运算在许多领域中是非常有用的,包括线性代数、数据挖掘和机器学习等。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值