(1)
〖算法流程〗 1 、数据初始化; 2 、递归填数:
判断第 J 种可能是否合法;
A 、如果合法:填数;判断是否到达目标( 20 个已填完):是,打印结果;不是,递归填下一个;
B 、如果不合法:选择下一种可能;
(2)
分析:如图 ( b ) , 马最多有四个方向,若原来的横坐标为 j 、纵坐标为 i, 则四个方向的移动可表示为:
1 : ( i,j )→( i+2,j+1 ); (i<3,j<8)
2: ( i,j )→( i+1,j+2 ); (i<4,j<7)
3: ( i,j )→( i-1,j+2 ); (i>0,j<7)
4: ( i,j )→( i-2,j+1 ); (i>1,j<8)
搜索策略:
S1:A[1]:=(0,0);
S2: 从 A[1] 出发,按移动规则依次选定某个方向,如果达到的是( 4,8 )则转向 S3, 否则继续搜索下一个到达的顶点;
S3: 打印路径。
源程序
(1)
#include <iostream> //HDU 1016 DFS 素数环
#include<string.h>
using namespace std;
int a[21]={1},n,used[21]; //a[0] 永远为1
int f(int n) //判断是否为素数
{
for(int i=2;i<=n-1;i++)
if(n%i==0)return 0;
return 1;
}
void dfs(int k)
{
if(k==n&&f(a[0]+a[n-1])) //如果递归到下标n并且满足条件就找到一组正确的数据了
{
for(int i=0;i<n-1;i++)
cout<<a[i]<<" ";
cout<<a[n-1]<<endl;
}
else
{
for(int i=2;i<=n;i++)
if(used[i]==0&&f(a[k-1]+i)) //如果i没有使用过,并且a[k-1]和i相加为素数
{
a[k]=i; //记录下标的值
used[i]=1; //标记为使用过的
dfs(k+1); //开始下一个下标的计算
used[i]=0; //清除标记
}
}
}
int main(int argc, char *argv[])
{
int c=1;
while(cin>>n)
{
memset(used,0,sizeof(used));
cout<<"Case "<<c++<<":"<<endl;
used[0]=1; //第一个数永远是1,所以下标0要标记为使用过的
dfs(1); //开始从下标1开始找
cout<<endl;
}
return 0;
}
(2)
#include<iostream>
using namespace std;
int map[5][9]={0};
int xx[4]={2,1,-1,-2};
int yy[4]={1,2,2,1};
int b[50],c[50]; //b[50],c[50]记录当前深度的x,y坐标
int search(int x,int y,int deep);
int main()
{
search(0,0,1);
return 0;
}
int search(int x,int y,int deep) //x当前行,y当前列,deep当前深度
{
if(x==4&&y==8){
for(int j=1;j<deep;j++)
{
cout<<b[j]<<","<<c[j]<<"->";
}
cout<<"4,8";
cout<<endl;
}
else
{
for(int i=0;i<4;i++)
{
if(x+xx[i]>=0&&x+xx[i]<=4&&y+yy[i]>=0&&y+yy[i]<=8&&!map[x+xx[i]][y+yy[i]])
{
b[deep]=x; //b[deep],c[deep]记录当前深度的x,y坐标
c[deep]=y;
map[x][y] = 1; //标记已经走过的点
search(x+xx[i],y+yy[i],deep+1);
map[x][y] = 0; //恢复已走过的点
}
}
}
return 0;
}