遥感影像的缨帽(K-T)变换Python实现

(1)介绍

缨帽变换(Kirchhoff Transform,K-T变换) 是一种在遥感图像处理中常用的技术,它可以有效地提取地物的空间特征和频谱信息。本文将对遥感缨帽变换的提出者、原理方法、公式、现在的发展、作用进行详细介绍,并附有相应的图解。

(2)利用程序结果进行出图展示

TM影像的前三个分量的物理意义:
●亮度:TM的6个波段的加权和,反映了总体的反射值。
●绿度: 反映了近红外与可见光部分的差值,绿色生物量的特征。
●湿度:反映了可见光和近红外(1-4波段)与较长的红外(第5, 7波段)的差
值,定义为湿度的根据是第5,7两个波段对土壤湿度和植物湿度最为敏感
在这里插入图片描述

(3)缨帽(K-T)变换变换原理详解

一、提出者

缨帽变换是由德国地球物理学家Gottfried Kirchhoff在19世纪50年代首次提出的。他将电磁波在介质中传播的过程进行了详细研究,并提出了一种计算电磁波在介质表面反射和透射的方法,即遥感缨帽变换。

二、原理方法

在这里插入图片描述在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

三、公式

在这里插入图片描述

(4)Python程序

在这里插入图片描述

# coding=utf-8
#!/usr/bin/env python
# -*- coding:utf-8 -*-
"""
@author: LIFEI
@time: 2023/8/23 13:28
@file: yincat.py
@project: main.py
@describe: CWNU
"""
import os
import cv2 as cv
import numpy as np

# 构建缨帽变换的转换系数
compose = [[0.3037,0.2793,0.4743,0.5585,0.5082,0.1863],      #对应的亮度分量
          [-0.2848,-0.2435,-0.5436,0.7243,0.0840,-0.1800],  # 对应的植被分量
          [0.1509,0.1973,0.3279,0.3406,-0.7112,-0.4572]]    #对应的湿度分量
compose = np.array(compose) # 将列表转为矩阵

# 获取影像数据存储于列表
def get_img_list(path):
    is_image_file = lambda x : any(x.endswith(extension)
                                   for extension in ['tif'])
    tm = [x for x in os.listdir(path) if is_image_file(x)]
    tm_list = []
    for j in range(0,len(tm)):
        tm_path = path + '/' + tm[j]
        print('the reading img is:',tm_path)
        tm_list.append(tm_path)
    print('Successfully reading')
    return tm_list

# 批量读取矩阵并将其存储于列表
def hat_change(list_path):
    img_base = []
    for k in range(0,len(list_path)):
        # print(list_path[k])
        #  !!!!!一定要记住flags=0,不然会返回三通道
        img = cv.imread(list_path[k],flags=0)
        # cv.imshow('tif',img)
        # cv.waitKey(0)
        img_base.append(img)
    return img_base

# 缨帽变换
def compose_hat(compose_x,img):
    res_list = []
    result_list = []
    for i in range(0,len(img)):
        # 获取影像的行列大小
        row, col = img[i].shape
        # 将影像转为一维行向量
        reshape_img = img[i].reshape(row*col)
        # 传入列表res_list
        res_list.append(reshape_img)
    # 波段6不参与,也就是列表的第5行,删除第5行以不参与运算
    delete_res_list = np.delete(res_list, 5, axis=0)
    for j in range(0,len(compose_x)):
        result_data = compose_x[j]@delete_res_list
        # 判断影像中的空值和0值,用均值代替,防止影像信息缺失
        for p in range(0,len(result_data)):
            if result_data[p] == 0 and result_data[p] == None:
                result_data[p] = np.nanmean(result_data)
            else:
                result_data[p] = result_data[p]
        # 维度转换逆变换,从向量转为二维
        result_data_data = result_data.astype('uint8').reshape(row,col)
        # 传给result_list
        result_list.append(result_data_data)
    return result_list

# 输出影像
def output(out_path,list):
    for m in range(0,len(list)):
        filepath = out_path+'/'+str(m+1)+'.TIF'
        # cv库写出图像
        cv.imwrite(filepath,list[m])
        print('the exporting img is:',filepath)
    print('Successfully exported!')

if __name__ == '__main__':
    path = "D:/data/result" # 存放TM影像的文件夹路径
    list = get_img_list(path)
    img_list = hat_change(list)
    re_list = compose_hat(compose, img_list)
    outpath = "D:/data/hat" # 输出路径
    output(outpath, re_list)

四、现在的发展
随着遥感技术的发展和广泛应用,遥感缨帽变换也得到了进一步的研究和改进。近年来,研究人员结合机器学习、深度学习等技术,提出了一系列基于缨帽变换的新方法,用于地物分类、目标检测、变化检测等应用。同时,缨帽变换在图像处理领域也得到了拓展,可以应用于医学图像分析、遥感图像融合等多个领域。

五、作用
遥感缨帽变换在遥感图像处理中具有广泛的作用。它可以提取地物的空间特征和频谱信息,有助于实现地物的分类、目标检测、变化检测等应用。通过遥感缨帽变换,可以充分利用遥感图像中的信息,

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

楠楠星球

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值