Python————Pandas统计分析基础

这篇博客介绍了Pandas的基础知识,包括读取文本和Excel数据,数据框的存储与构建,数据访问与修改,描述性统计分析,时间类型数据处理,以及分组聚合和透视表的创建。Pandas作为强大的数据分析工具,提供了灵活的数据结构,如DataFrame和Series,方便进行数据处理和分析。
摘要由CSDN通过智能技术生成

Pandas简介

pandas:强大的数据分析和处理工具
快速、灵活、富有表现力的数据结构:DataFrame数据框和Series系列

Pandas读取文本数据

在这里插入图片描述

#读写不同数据源的数据
import pandas as pd
data_txt = pd.read_csv('meal_order_info.txt',sep=' ')    #指定一行中数据间的分隔符为空格
data_csv = pd.read_csv('meal_order_info.csv',encoding='GBK')    #设置解码方式为GBK


data_txt

在这里插入图片描述

data_csv

在这里插入图片描述

储存数据框

在这里插入图片描述

#将数据框储存为文本文件数据
data_csv.to_csv('tmp/data_csv.csv',index=None,encoding ='gbk')  #index为行索引 ,header为列索引  None为取消

Pandas读取excel文件

在这里插入图片描述

#Pandas读取excel文件
data_excel =pd.read_excel('meal_order_detail.xlsx',sheet_name='meal_order_detail2')
data_excel

在这里插入图片描述

将数据框储存为excel文件

#将数据框储存为excel文件
data_excel.to_excel('tmp/data_excel.xlsx',index=None,sheet_name='test1')

构建数据框

在这里插入图片描述

#series 系列
import pandas as pd
ser1 = pd.Series([1,2,'a'],index=['a','b','c'])
print(ser1)
ser2  = pd.Series({
   'a':[1,2,3],'b':['1','2','3']})
print(ser2)

在这里插入图片描述

d=[[1.3,2.0,3,4],[2,4,1,4],[2,5,1.9,7],[3,1,0,11]]
print(d)
df = pd.DataFrame(d,index=['a','b','c','d'],columns=['A','B','C','D'])  #index 设置行名称 columns 设置列名称
print(df)

在这里插入图片描述

在这里插入图片描述

d={
   'color':['blue','green','yellow','red','white'],
   'object':['ball','pen','pencil','paper','mug'],
  'price':[1.2,1.0,0.6,0.9,1.7]}
frame = pd.DataFrame(d,index=['a','b','c','d','e'])
print(frame)


pd
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值