
深度学习
深度学习入门教程
Anthony_CH
这个作者很懒,什么都没留下…
展开
-
python安装 learn2learn库 || 在线安装方式或者本地安装
安装 learn2learn 依赖库原创 2022-11-15 20:51:12 · 2745 阅读 · 1 评论 -
基于优化的对抗样本生成算法
基于优化的对抗样本生成算法原创 2022-06-05 12:47:15 · 691 阅读 · 0 评论 -
PyTorch入门一 || 基础知识回顾,手动搭建模型,理解前馈、反向传播
理解前馈、反向传播、初试pytorch的tensor属性原创 2022-01-29 15:55:33 · 1204 阅读 · 0 评论 -
PyTorch入门二 || pytorch线性模型
pytorch线性模型简介原创 2022-01-31 11:02:34 · 1080 阅读 · 0 评论 -
PyTorch入门三 || 多维模型输入的降维,非线性层叠加
Pytorch分类模型分类问题中,输出并不是像回归一样是一个确定的数值,而是一个概率;假如10分类问题中,我们输入一个x,得到的是它的输出对于某个分类最大的概率,而这10个概率值加起来要等于1回归问题的输出是一个实数值,而分类问题的输出是一个概率,所以我们需要找一个函数,把实数值映射到概率 [0,1] 区间,sigmoid函数。sigmoid函数是一个饱和函数,因为当x大于某个值时,函数值上升得很慢,即导数值变小,梯度很小不同的sigmoid函数loss的问题,由于是多分类任务,故y_原创 2022-02-02 11:27:43 · 1434 阅读 · 0 评论 -
PyTorch入门四 || 定义DataLoader 和 Dataset
定义DataLoader和Dataset原创 2022-02-03 11:53:09 · 852 阅读 · 0 评论 -
PyTorch入门五 || 多分类问题
网络结构:前面的是线性层+sigmoid激活层,最后一层是Softmax层Softmax的公式为如下:Softmax的损失函数-YlogY_predcodeimport numpy as npy = np.array([1,0,0])z = np.array([0.2,0.1,-0.1])y_pred = np.exp(z)/np.exp(z).sum()loss = (-y*np.log(y_pred)).sum()print(loss) torch自带交叉熵损失API,原创 2022-02-05 11:42:44 · 1084 阅读 · 0 评论 -
PyTorch入门六 || 卷积神经网络(基础)
CNN基础 基于PyTorch原创 2022-02-06 13:28:58 · 1387 阅读 · 0 评论 -
PyTorch入门七 || 卷积神经网络(提高)
CNN提高篇,GoogleNet、残差网络实现原创 2022-02-07 11:18:05 · 642 阅读 · 0 评论 -
PyTorch入门八 || 循环神经网络(基础)
PyTorch入门八 || 循环神经网络(基础)RNN专门用于处理带序列模式的数据,如天气预测,自然语言处理预测降雨的例子给一个气象表,包含(温度|气压|是否下雨)这三个信息字段我们利用前三天的气象信息来预测今天是否会下雨,那么需要将数据划分为四个一组,前三个作为input,第四个作为标签,是否下雨。原理图h0 与 x1 作为输入 经过 RNN Cell 得到输出h1,再将h1和x2作为输入 经过RNN Cell得到h2输出,一直循环下去,h0可以是CNN的输出,这样就将CNN与RNN接到一原创 2022-02-08 13:46:38 · 1475 阅读 · 2 评论 -
PyTorch入门九 || 自编码
PyTorch入门九 || 自编码原创 2022-02-12 16:14:45 · 691 阅读 · 0 评论 -
PyTorch入门十 || 模型保存
PyTorch入门十 || 模型保存原创 2022-02-12 16:15:27 · 666 阅读 · 0 评论 -
Pytorch入门十一 || 对抗神经网络
原理很简单,一个网络做卷积分类,另一个网络做反卷积生成图片原创 2022-03-01 13:16:06 · 911 阅读 · 0 评论 -
Pytorch入门十二 || matplotlib提取卷积神经网络过程的特征图并展示,卷积神经网络可视化
基于pytorch、matplotlib 提取卷积神经网络的 特征图原创 2022-03-01 23:15:49 · 490 阅读 · 0 评论 -
Pytorch入门十三 || 编写卷积神经网络时自动求出卷积后flatten向量的维度
编写卷积神经网络时自动求出卷积后flatten向量的维度原创 2022-03-19 20:16:28 · 1476 阅读 · 0 评论