为什么负数要用补码表示?
十进制转二进制:除2取余法
[整数类型]的数字在计算机的存储方式:int类型,32位,最高位[符号标志位],正数符号位0,负数的符号位1,剩余的31位则表示2进制数据。
负数,以补码表示,所谓的补码就是把正数的二进制全部取反再加1,-1的二进制就是把数字1的二进制取反后再加1。
如果负数不是使用补码的方式标识,则在做基本加减法运算的时候,需要多一步操作来判断是否为负数,如果为负数,还需要把加法反转成减法,或者把减法反转成加法,为了性能考虑要简化这个过程。
而用了补码的表示方式,对于负数的加减法操作,实际上是和正数加减法操作一样的。
十进制小数怎么转成二进制?
小数是怎么转二进制的,小数部分的转换不同于整数部分,采用的是乘2取整法,将十进制的小数部分乘以2作为二进制的一位,继续取小数部分乘以2作为下一位,直到不存在小数为止。
由于计算机的资源是有限的,所以没办法用二进制精确的表示0.1,只能用[近似值]来表示,就是在有限的精度情况下,最大化接近0.1的二进制数,于是就会造成精度缺失的情况。
对于二进制小数转十进制时,小数点后面的指数幂是负数。
计算机是怎么存小数的?
1000.101是[定点数]形式,小数点是定死的
计算机存储小数的采用的是浮点数,名字里的[浮点]表示小数点是可以浮动的。
比如1000.101二进制数,表示成1.000101*2^3,类似于数学上的科学记数法。
000101:尾数,即小数点后面的数字
3:指数,指定了小数点在数据中的位置
符号位:0表示正数,1为负数
指数位:指定了小数点在数据中的位置,指数可以是负数,也可以是正数,指数位的长度越长则数值的表示范围就越大。
尾数位:小数点右侧的数字,也就是小数部分,尾数的长度决定了这个数的精度。
32位浮点数,单精度浮点数,float变量
64位浮点数,双精度浮点数,double变量
double尾数部分52位,float尾数部分23位,同事都带有一个固定隐含位,所以double有53个二进制有效位,float有24个二进制有效位,所以精度在十进制分别是log10(2^53)约等于15.95和log10(2^24)约等于7.22位,double有效数字式15~16位,float是7-8位,有效位包含整数和小数。
double的指数部分是11位,float的指数位是8位。
偏移量:为了减少不必要的麻烦,在实际存储指数的时候,需要把指数转换成无符号整数。
float的指数部分是8位,IEEE的标准规定单精度浮点的指数取值范围是-126~+127,于是为了把指数转换成无符号整数,就要加个偏移量,比如float的指数偏移量是127。
0.1+0.2==0.3吗?
不是所有的小数都可以用[完整]的二进制来表示的,比如十进制0.1在转换成二进制小数的时候,是一串无限循环的二进制数,计算机是无法表达无限循环的二进制数的。用近似值表示。
现在基本用IEEE 754规范的[单精度浮点类型]或[双精度浮点类型]来存储小数,根据精度的不同,近似值也会不同。
所以不等于0.3,因为有的小数无法用完整的二进制来表示,只能采用近似数的方式来保存。
总结
为什么负数要用补码表示?
负数之所以用补码的方式来表示,主要是为了统一和正数的加减法操作一样,毕竟数字的加减法是很常用的一个操作,就不要搞特殊化,尽量以统一的方式来运算。
十进制小数怎么转成二进制?
十进制整数转二进制使用的是「除 2 取余法」,十进制小数使用的是「乘 2 取整法」。
计算机是怎么存小数的?
计算机是以浮点数的形式存储小数的,大多数计算机都是 IEEE 754 标准定义的浮点数格式,包含三个部分:
- 符号位:表示数字是正数还是负数,为 0 表示正数,为 1 表示负数;
- 指数位:指定了小数点在数据中的位置,指数可以是负数,也可以是正数,指数位的长度越长则数值的表达范围就越大;
- 尾数位:小数点右侧的数字,也就是小数部分,比如二进制 1.0011 x 2^(-2),尾数部分就是 0011,而且尾数的长度决定了这个数的精度,因此如果要表示精度更高的小数,则就要提高尾数位的长度;
用 32 位来表示的浮点数,则称为单精度浮点数,也就是我们编程语言中的 float 变量,而用 64 位来表示的浮点数,称为双精度浮点数,也就是 double 变量。
0.1 + 0.2 == 0.3 吗?
不是的,0.1 和 0.2 这两个数字用二进制表达会是一个一直循环的二进制数,比如 0.1 的二进制表示为 0.0 0011 0011 0011… (0011 无限循环),对于计算机而言,0.1 无法精确表达,这是浮点数计算造成精度损失的根源。