复数小性质

性质

我们用极坐标形式表示复数 a + b i a+bi a+bi ( a 2 + b 2 , θ ) \left(\sqrt{a^2+b^2},\theta\right) (a2+b2 ,θ),其中 θ \theta θ为坐标极角。

那么有 ( a , θ a ) ⋅ ( b , θ b ) = ( a b , θ a + θ b ) (a,\theta_{a})\cdot(b,\theta_b)=(ab,\theta_a+\theta_b) (a,θa)(b,θb)=(ab,θa+θb)

证明

( a , θ a ) = a cos ⁡ θ a + ( a sin ⁡ θ a ) i (a,\theta_a)=a\cos{\theta_a}+(a\sin{\theta_a})i (a,θa)=acosθa+(asinθa)i ( b , θ b ) = b cos ⁡ θ b + ( b sin ⁡ θ b ) i (b,\theta_b)=b\cos{\theta_b}+(b\sin{\theta_b})i (b,θb)=bcosθb+(bsinθb)i

那么可以得到:
( a , θ a ) ⋅ ( b , θ b ) = [ a cos ⁡ θ a + ( a sin ⁡ θ a ) i ] ⋅ [ b cos ⁡ θ b + ( b sin ⁡ θ b ) i ] (a,\theta_{a})\cdot(b,\theta_b)=\left[a\cos{\theta_a}+(a\sin{\theta_a})i\right]\cdot \left[b\cos{\theta_b}+(b\sin{\theta_b})i\right] (a,θa)(b,θb)=[acosθa+(asinθa)i][bcosθb+(bsinθb)i]
将括号打开,得到:
( a , θ a ) ⋅ ( b , θ b ) = [ ( a cos ⁡ θ a ) ⋅ ( b cos ⁡ θ b ) − ( a sin ⁡ θ a ) ( b sin ⁡ θ b ) ] + [ ( a sin ⁡ θ a ) ⋅ ( b cos ⁡ θ b ) + ( a cos ⁡ θ a ) ⋅ ( b sin ⁡ θ b ) ] i (a,\theta_{a})\cdot(b,\theta_b)=\left[(a\cos{\theta_a})\cdot(b\cos{\theta_b})-(a\sin{\theta_a})(b\sin{\theta_b})\right]+\left[(a\sin{\theta_a})\cdot(b\cos{\theta_b})+(a\cos{\theta_a})\cdot(b\sin\theta_{b})\right]i (a,θa)(b,θb)=[(acosθa)(bcosθb)(asinθa)(bsinθb)]+[(asinθa)(bcosθb)+(acosθa)(bsinθb)]i
提取公因式可得:
( a , θ a ) ⋅ ( b , θ b ) = a b ( cos ⁡ θ a cos ⁡ θ b − sin ⁡ θ a sin ⁡ θ n ) + a b ( sin ⁡ θ a cos ⁡ θ b + cos ⁡ θ a sin ⁡ θ b ) i (a,\theta_{a})\cdot(b,\theta_b)=ab(\cos{\theta_a}\cos{\theta_b}-\sin{\theta_a}\sin{\theta_n})+ab(\sin{\theta_a}\cos{\theta_b}+\cos{\theta_a}\sin{\theta_b})i (a,θa)(b,θb)=ab(cosθacosθbsinθasinθn)+ab(sinθacosθb+cosθasinθb)i
由和角公式得:
( a , θ a ) ⋅ ( b , θ b ) = a b ⋅ cos ⁡ ( θ a + θ b ) + a b ⋅ sin ⁡ ( θ a + θ n ) i (a,\theta_{a})\cdot(b,\theta_b)=ab\cdot\cos(\theta_a+\theta_b)+ab\cdot\sin(\theta_a+\theta_n)i (a,θa)(b,θb)=abcos(θa+θb)+absin(θa+θn)i
也即:
( a , θ a ) ⋅ ( b , θ b ) = ( a b , θ a + θ b ) (a,\theta_{a})\cdot(b,\theta_b)=(ab,\theta_a+\theta_b) (a,θa)(b,θb)=(ab,θa+θb)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值