性质
我们用极坐标形式表示复数 a + b i a+bi a+bi为 ( a 2 + b 2 , θ ) \left(\sqrt{a^2+b^2},\theta\right) (a2+b2,θ),其中 θ \theta θ为坐标极角。
那么有 ( a , θ a ) ⋅ ( b , θ b ) = ( a b , θ a + θ b ) (a,\theta_{a})\cdot(b,\theta_b)=(ab,\theta_a+\theta_b) (a,θa)⋅(b,θb)=(ab,θa+θb)。
证明
( a , θ a ) = a cos θ a + ( a sin θ a ) i (a,\theta_a)=a\cos{\theta_a}+(a\sin{\theta_a})i (a,θa)=acosθa+(asinθa)i, ( b , θ b ) = b cos θ b + ( b sin θ b ) i (b,\theta_b)=b\cos{\theta_b}+(b\sin{\theta_b})i (b,θb)=bcosθb+(bsinθb)i。
那么可以得到:
(
a
,
θ
a
)
⋅
(
b
,
θ
b
)
=
[
a
cos
θ
a
+
(
a
sin
θ
a
)
i
]
⋅
[
b
cos
θ
b
+
(
b
sin
θ
b
)
i
]
(a,\theta_{a})\cdot(b,\theta_b)=\left[a\cos{\theta_a}+(a\sin{\theta_a})i\right]\cdot \left[b\cos{\theta_b}+(b\sin{\theta_b})i\right]
(a,θa)⋅(b,θb)=[acosθa+(asinθa)i]⋅[bcosθb+(bsinθb)i]
将括号打开,得到:
(
a
,
θ
a
)
⋅
(
b
,
θ
b
)
=
[
(
a
cos
θ
a
)
⋅
(
b
cos
θ
b
)
−
(
a
sin
θ
a
)
(
b
sin
θ
b
)
]
+
[
(
a
sin
θ
a
)
⋅
(
b
cos
θ
b
)
+
(
a
cos
θ
a
)
⋅
(
b
sin
θ
b
)
]
i
(a,\theta_{a})\cdot(b,\theta_b)=\left[(a\cos{\theta_a})\cdot(b\cos{\theta_b})-(a\sin{\theta_a})(b\sin{\theta_b})\right]+\left[(a\sin{\theta_a})\cdot(b\cos{\theta_b})+(a\cos{\theta_a})\cdot(b\sin\theta_{b})\right]i
(a,θa)⋅(b,θb)=[(acosθa)⋅(bcosθb)−(asinθa)(bsinθb)]+[(asinθa)⋅(bcosθb)+(acosθa)⋅(bsinθb)]i
提取公因式可得:
(
a
,
θ
a
)
⋅
(
b
,
θ
b
)
=
a
b
(
cos
θ
a
cos
θ
b
−
sin
θ
a
sin
θ
n
)
+
a
b
(
sin
θ
a
cos
θ
b
+
cos
θ
a
sin
θ
b
)
i
(a,\theta_{a})\cdot(b,\theta_b)=ab(\cos{\theta_a}\cos{\theta_b}-\sin{\theta_a}\sin{\theta_n})+ab(\sin{\theta_a}\cos{\theta_b}+\cos{\theta_a}\sin{\theta_b})i
(a,θa)⋅(b,θb)=ab(cosθacosθb−sinθasinθn)+ab(sinθacosθb+cosθasinθb)i
由和角公式得:
(
a
,
θ
a
)
⋅
(
b
,
θ
b
)
=
a
b
⋅
cos
(
θ
a
+
θ
b
)
+
a
b
⋅
sin
(
θ
a
+
θ
n
)
i
(a,\theta_{a})\cdot(b,\theta_b)=ab\cdot\cos(\theta_a+\theta_b)+ab\cdot\sin(\theta_a+\theta_n)i
(a,θa)⋅(b,θb)=ab⋅cos(θa+θb)+ab⋅sin(θa+θn)i
也即:
(
a
,
θ
a
)
⋅
(
b
,
θ
b
)
=
(
a
b
,
θ
a
+
θ
b
)
(a,\theta_{a})\cdot(b,\theta_b)=(ab,\theta_a+\theta_b)
(a,θa)⋅(b,θb)=(ab,θa+θb)