狄利克雷卷积的消去律

文章证明了一个关于数论函数的定理,即如果f*g=0且f≠0,则g=0。证明过程使用了数学归纳法,首先假设存在最小正整数n使得f(n)≠0,然后通过分析狄利克雷卷积的性质,推导出g(1)=0。接着利用归纳假设,对于所有1≤k 摘要由CSDN通过智能技术生成

定理 f ∗ g = 0 , f ≠ 0 → g = 0 f*g=0,f\ne 0 \to g=0 fg=0,f=0g=0。(这里认为数论函数的定义域不包括 0 0 0

证明 采用数学归纳法。

假设 n n n为最小的正整数使得 f ( n ) ≠ 0 f(n)\ne 0 f(n)=0

由狄利克雷卷积的定义,得: ( f ∗ g ) ( k n ) = ∑ i ∣ k n f ( i ) g ( k n i ) = 0 (f*g)(kn)=\sum\limits_{i\mid kn}f(i)g(\frac{kn}{i})=0 (fg)(kn)=iknf(i)g(ikn)=0,其中 k k k是任意一个正整数。

k = 1 k=1 k=1时,对于 i < n i<n i<n,都有 f ( i ) = 0 f(i)=0 f(i)=0,所以 i = n i=n i=n时,必有 f ( n ) g ( 1 ) = 0 f(n)g(1)=0 f(n)g(1)=0,因为 f ( n ) ≠ 0 f(n)\ne 0 f(n)=0,所以 g ( 1 ) = 0 g(1)=0 g(1)=0

归纳假设对于 1 ≤ k < m 1\le k< m 1k<m,都有 g ( k ) = 0 g(k)=0 g(k)=0,那么对于 k = m k=m k=m,也有 ∑ i ∣ m n f ( i ) g ( m n i ) = 0 \sum\limits_{i\mid mn}f(i)g(\frac{mn}{i})=0 imnf(i)g(imn)=0。对于 i < n i<n i<n,都有 f ( i ) = 0 f(i)=0 f(i)=0;对于 n < i < m n n<i<mn n<i<mn,都有 m n i < m \frac{mn}{i}<m imn<m,于是有 g ( m n i ) = 0 g(\frac{mn}{i})=0 g(imn)=0。所以对于 i = n i=n i=n,必有 f ( n ) g ( m ) = 0 f(n)g(m)=0 f(n)g(m)=0,因为 f ( n ) ≠ 0 f(n)\ne 0 f(n)=0,所以 g ( m ) = 0 g(m)=0 g(m)=0。证毕。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值