-
两条结论:
1. lim n → ∞ \lim_{n \to \infty} limn→∞ 通常是表示“当 n n n 趋向正无穷时”
2. 当 x x x 是一个固定的正数时,乘积 n x n x nx 会随着 n → ∞ n \to \infty n→∞ 趋向无穷大。而当 x x x 逐渐趋向零时,结果取决于 x x x 和 n n n 的变化速率。 -
分析:在下题中,为什么 n x → + ∞ n x \to +\infty nx→+∞, x > 0 x > 0 x>0,即使 x x x 非常小(接近 0)?
-
0
+
×
∞
0^+ \times \infty
0+×∞ 并不是未定式,而是一个 不确定型,因为我们知道
0
+
0^+
0+ 是一个非常小的正数,即它虽然非常接近零,但始终是正数,且它在趋向零的过程中是连续的(从正数逐渐变小)。考虑极限的情境,假设
x
n
→
0
+
x_n \to 0^+
xn→0+ (即趋向零但始终为正),而
n
→
∞
n \to \infty
n→∞,我们来分析乘积
n
x
n
n x_n
nxn :
- 如果 x n x_n xn 足够慢地趋向零(比如 x n = 1 n 2 x_n = \frac{1}{n^2} xn=n21 ),那么乘积 n x n n x_n nxn 就会趋向零。
- 如果 x n x_n xn 以较慢的速度趋向零(比如 x n = 1 n x_n = \frac{1}{n} xn=n1 ),那么乘积 n x n n x_n nxn 可能趋向常数。
- 如果 x n x_n xn 以较快的速度趋向零(比如 x n = 1 n x_n = \frac{1}{n} xn=n1 ),而 n n n 增长得非常快,那么乘积 n x n n x_n nxn 可能趋向无穷大。
- 为什么在此题中
n
x
→
+
∞
n x \to +\infty
nx→+∞,而不是趋近0或一个常数?
- 如果 x x x 是一个固定的正数( x > 0 x > 0 x>0),无论 x x x 是多么小,只要 x x x 是正数,乘积 n x n x nx 会随着 n n n 的增大而趋向无穷大: n x → + ∞ n x \to +\infty nx→+∞。
- 如果 x x x 随着 n n n 的增大而减小(例如 x = 1 n x = \frac{1}{n} x=n1 或更快的速度),那么 n x n x nx 的极限会依赖于 x n x_n xn 和 n n n 的变化速率。例如,如果 x n = 1 n 2 x_n = \frac{1}{n^2} xn=n21 ,则 n x n → 0 n x_n \to 0 nxn→0 ;如果 x n = 1 n x_n = \frac{1}{n} xn=n1 ,则 n x n → 1 n x_n \to 1 nxn→1 。
- 因此,在某些情况下,特别是当 x x x 是一个固定的正数时,乘积 n x n x nx 会随着 n → ∞ n \to \infty n→∞ 趋向无穷大。而当 x x x 逐渐趋向零时,结果取决于 x x x 和 n n n 的变化速率。
-
0
+
×
∞
0^+ \times \infty
0+×∞ 并不是未定式,而是一个 不确定型,因为我们知道
0
+
0^+
0+ 是一个非常小的正数,即它虽然非常接近零,但始终是正数,且它在趋向零的过程中是连续的(从正数逐渐变小)。考虑极限的情境,假设
x
n
→
0
+
x_n \to 0^+
xn→0+ (即趋向零但始终为正),而
n
→
∞
n \to \infty
n→∞,我们来分析乘积
n
x
n
n x_n
nxn :
-
P25