含参变量的极限怎么计算?

  • 两条结论:
    1. lim ⁡ n → ∞ \lim_{n \to \infty} limn 通常是表示“当 n n n 趋向正无穷时”
    2. 当 x x x 是一个固定的正数时,乘积 n x n x nx 会随着 n → ∞ n \to \infty n 趋向无穷大。而当 x x x 逐渐趋向零时,结果取决于 x x x n n n 的变化速率。

  • 分析:在下题中,为什么 n x → + ∞ n x \to +\infty nx+, x > 0 x > 0 x>0,即使 x x x 非常小(接近 0)?

    • 0 + × ∞ 0^+ \times \infty 0+× 并不是未定式,而是一个 不确定型,因为我们知道 0 + 0^+ 0+ 是一个非常小的正数,即它虽然非常接近零,但始终是正数,且它在趋向零的过程中是连续的(从正数逐渐变小)。考虑极限的情境,假设 x n → 0 + x_n \to 0^+ xn0+ (即趋向零但始终为正),而 n → ∞ n \to \infty n,我们来分析乘积 n x n n x_n nxn
      • 如果 x n x_n xn 足够慢地趋向零(比如 x n = 1 n 2 x_n = \frac{1}{n^2} xn=n21 ),那么乘积 n x n n x_n nxn 就会趋向零。
      • 如果 x n x_n xn 以较慢的速度趋向零(比如 x n = 1 n x_n = \frac{1}{n} xn=n1 ),那么乘积 n x n n x_n nxn 可能趋向常数。
      • 如果 x n x_n xn 以较快的速度趋向零(比如 x n = 1 n x_n = \frac{1}{n} xn=n1 ),而 n n n 增长得非常快,那么乘积 n x n n x_n nxn 可能趋向无穷大。
    • 为什么在此题中 n x → + ∞ n x \to +\infty nx+,而不是趋近0或一个常数?
      • 如果 x x x 是一个固定的正数( x > 0 x > 0 x>0),无论 x x x 是多么小,只要 x x x 是正数,乘积 n x n x nx 会随着 n n n 的增大而趋向无穷大: n x → + ∞ n x \to +\infty nx+
      • 如果 x x x 随着 n n n 的增大而减小(例如 x = 1 n x = \frac{1}{n} x=n1 或更快的速度),那么 n x n x nx 的极限会依赖于 x n x_n xn n n n 的变化速率。例如,如果 x n = 1 n 2 x_n = \frac{1}{n^2} xn=n21 ,则 n x n → 0 n x_n \to 0 nxn0 ;如果 x n = 1 n x_n = \frac{1}{n} xn=n1 ,则 n x n → 1 n x_n \to 1 nxn1
      • 因此,在某些情况下,特别是当 x x x 是一个固定的正数时,乘积 n x n x nx 会随着 n → ∞ n \to \infty n 趋向无穷大。而当 x x x 逐渐趋向零时,结果取决于 x x x n n n 的变化速率。
  • P25 在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值