哪些情况要分左右极限考虑?

哪些情况要分左右极限考虑?

问:哪些情况要分左右极限考虑?答:计算函数极限时,大多数情况下不需要分左右极限考虑,需要分左右的情况主要为以下两部分:

(一)基本初等函数:

(1) 幂函数,如
1 x ( x → 0 ) , lim ⁡ x → 0 − 1 x = − ∞ , lim ⁡ x → 0 + 1 x = + ∞ \frac{1}{x}(x \rightarrow 0) ,\lim _{x \rightarrow 0^{-}} \frac{1}{x}=-\infty, \quad \lim _{x \rightarrow 0^{+}} \frac{1}{x}=+\infty x1(x0)x0limx1=,x0+limx1=+
在这里插入图片描述

在这里插入图片描述

(2)指数函数,如 e ∞ \mathrm{e}^{\infty} e 型:
lim ⁡ x → ∞ e x , lim ⁡ x → 0 e 1 x , lim ⁡ x → 1 e 1 x − 1 ; \lim _{x \rightarrow \infty} \mathrm{e}^{x} , \lim _{x \rightarrow 0} \mathrm{e}^{\frac{1}{x}}, \lim _{x \rightarrow 1} \mathrm{e}^{\frac{1}{x-1}} ; xlimexx0limex1,x1limex11
在这里插入图片描述

(3) 三角函数,如 tan ⁡ x \tan x tanx:
lim ⁡ x → π 2 + tan ⁡ x = − ∞ , lim ⁡ x → π 2 − tan ⁡ x = + ∞ \lim _{x \rightarrow \frac{\pi}{2}^{+}} \tan x=-\infty, \quad \lim _{x \rightarrow \frac{\pi}{2}^{-}} \tan x=+\infty x2π+limtanx=,x2πlimtanx=+
在这里插入图片描述

(4) 反三角函数,如 arctan ⁡ ∞ \arctan \infty arctan 型:
lim ⁡ x → ∞ arctan ⁡ x , lim ⁡ x → 0 arctan ⁡ 1 x , lim ⁡ x → 1 arctan ⁡ 1 x − 1 . \lim _{x \rightarrow \infty} \arctan x , \lim _{x \rightarrow 0} \arctan \frac{1}{x}, \lim _{x \rightarrow 1} \arctan \frac{1}{x-1} . xlimarctanx,x0limarctanx1,x1limarctanx11.
在这里插入图片描述

(二 ) 分段函数分段点:

取分段函数分段点的极限时,需要讨论左右趋向的情况.
(1)绝对值函数,例如 ∣ x ∣ ( x → 0 |x|(x \rightarrow 0 x(x0时:
lim ⁡ x → 0 + ∣ x ∣ x = 1 , lim ⁡ x → 0 − ∣ x ∣ x = − 1 ; \lim _{x \rightarrow 0^{+}} \frac{|x|}{x}=1, \quad \lim _{x \rightarrow 0^{-}} \frac{|x|}{x}=-1 ; x0+limxx=1,x0limxx=1;
(2)取整函数,例如 [ x ] ( x → Z 时 ) [x](x \rightarrow Z 时) [x](xZ)
lim ⁡ x → 0 + [ x ] = 0 , lim ⁡ x → 0 − [ x ] = − 1  ;  \lim _{x \rightarrow 0^{+}}[x]=0, \quad \lim _{x \rightarrow 0^{-}}[x]=-1 \text { ; } x0+lim[x]=0,x0lim[x]=1  
(3) 符号函数: y = sgn ⁡ x = { 1 , x > 0 0 , x = 0 − 1 , x < 0 y=\operatorname{sgn} x=\left\{\begin{array}{l}1, x>0 \\ 0, x=0 \\ -1, x<0\end{array}\right. y=sgnx= 1,x>00,x=01,x<0 lim ⁡ x → 0 − sgn ⁡ x = − 1 , lim ⁡ x → 0 + sgn ⁡ x = 1 \lim _{x \rightarrow 0^{-}} \operatorname{sgn} x=-1, \lim _{x \rightarrow 0^{+}} \operatorname{sgn} x=1 limx0sgnx=1,limx0+sgnx=1.
【注】还比如 x → ∞ x \rightarrow \infty x 型:当 x → ∞ x \rightarrow \infty x 要分 x → − ∞ x \rightarrow-\infty x, x → + ∞ x \rightarrow+\infty x+ 讨论.

  • 考研笔记

在这里插入图片描述
在这里插入图片描述

  • arctan x图像
    在这里插入图片描述
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值