哪些情况要分左右极限考虑?
问:哪些情况要分左右极限考虑?答:计算函数极限时,大多数情况下不需要分左右极限考虑,需要分左右的情况主要为以下两部分:
(一)基本初等函数:
(1) 幂函数,如
1
x
(
x
→
0
)
,
lim
x
→
0
−
1
x
=
−
∞
,
lim
x
→
0
+
1
x
=
+
∞
\frac{1}{x}(x \rightarrow 0) ,\lim _{x \rightarrow 0^{-}} \frac{1}{x}=-\infty, \quad \lim _{x \rightarrow 0^{+}} \frac{1}{x}=+\infty
x1(x→0),x→0−limx1=−∞,x→0+limx1=+∞
(2)指数函数,如
e
∞
\mathrm{e}^{\infty}
e∞ 型:
lim
x
→
∞
e
x
,
lim
x
→
0
e
1
x
,
lim
x
→
1
e
1
x
−
1
;
\lim _{x \rightarrow \infty} \mathrm{e}^{x} , \lim _{x \rightarrow 0} \mathrm{e}^{\frac{1}{x}}, \lim _{x \rightarrow 1} \mathrm{e}^{\frac{1}{x-1}} ;
x→∞limex,x→0limex1,x→1limex−11;
(3) 三角函数,如
tan
x
\tan x
tanx:
lim
x
→
π
2
+
tan
x
=
−
∞
,
lim
x
→
π
2
−
tan
x
=
+
∞
\lim _{x \rightarrow \frac{\pi}{2}^{+}} \tan x=-\infty, \quad \lim _{x \rightarrow \frac{\pi}{2}^{-}} \tan x=+\infty
x→2π+limtanx=−∞,x→2π−limtanx=+∞
(4) 反三角函数,如
arctan
∞
\arctan \infty
arctan∞ 型:
lim
x
→
∞
arctan
x
,
lim
x
→
0
arctan
1
x
,
lim
x
→
1
arctan
1
x
−
1
.
\lim _{x \rightarrow \infty} \arctan x , \lim _{x \rightarrow 0} \arctan \frac{1}{x}, \lim _{x \rightarrow 1} \arctan \frac{1}{x-1} .
x→∞limarctanx,x→0limarctanx1,x→1limarctanx−11.
(二 ) 分段函数分段点:
取分段函数分段点的极限时,需要讨论左右趋向的情况.
(1)绝对值函数,例如
∣
x
∣
(
x
→
0
|x|(x \rightarrow 0
∣x∣(x→0时:
lim
x
→
0
+
∣
x
∣
x
=
1
,
lim
x
→
0
−
∣
x
∣
x
=
−
1
;
\lim _{x \rightarrow 0^{+}} \frac{|x|}{x}=1, \quad \lim _{x \rightarrow 0^{-}} \frac{|x|}{x}=-1 ;
x→0+limx∣x∣=1,x→0−limx∣x∣=−1;
(2)取整函数,例如
[
x
]
(
x
→
Z
时
)
[x](x \rightarrow Z 时)
[x](x→Z时):
lim
x
→
0
+
[
x
]
=
0
,
lim
x
→
0
−
[
x
]
=
−
1
;
\lim _{x \rightarrow 0^{+}}[x]=0, \quad \lim _{x \rightarrow 0^{-}}[x]=-1 \text { ; }
x→0+lim[x]=0,x→0−lim[x]=−1 ;
(3) 符号函数:
y
=
sgn
x
=
{
1
,
x
>
0
0
,
x
=
0
−
1
,
x
<
0
y=\operatorname{sgn} x=\left\{\begin{array}{l}1, x>0 \\ 0, x=0 \\ -1, x<0\end{array}\right.
y=sgnx=⎩
⎨
⎧1,x>00,x=0−1,x<0 有
lim
x
→
0
−
sgn
x
=
−
1
,
lim
x
→
0
+
sgn
x
=
1
\lim _{x \rightarrow 0^{-}} \operatorname{sgn} x=-1, \lim _{x \rightarrow 0^{+}} \operatorname{sgn} x=1
limx→0−sgnx=−1,limx→0+sgnx=1.
【注】还比如
x
→
∞
x \rightarrow \infty
x→∞ 型:当
x
→
∞
x \rightarrow \infty
x→∞ 要分
x
→
−
∞
x \rightarrow-\infty
x→−∞,
x
→
+
∞
x \rightarrow+\infty
x→+∞ 讨论.
- 考研笔记
- arctan x图像