【导数与函数的性质】

导数与函数的性质

  1. 可导与连续的关系
    ∗ ∗ f ( x ) 在 x 0 处可导 ⇒ f ( x ) 在 x 0 处连续,反推不对 ∗ ∗ **f(x)在x_{0} 处可导\Rightarrow f(x)在x_{0} 处连续,反推不对** f(x)x0处可导f(x)x0处连续,反推不对
  2. 导函数要么连续,要么振荡间断,不可能有其他类型的间断点
  3. 导函数的奇偶性 若 f ( x ) 是可导的奇(偶)函数,则其导函数 f ′ ( x ) 是偶(奇)函数。反推不成立 若f(x)是可导的奇(偶)函数,则其导函数f'(x)是偶(奇)函数。反推不成立 f(x)是可导的奇(偶)函数,则其导函数f(x)是偶(奇)函数。反推不成立
  4. 导函数的周期性 若 f ( x ) 是可导的周期为 T 的函数,则其导函数 f ′ ( x ) 也是。反推不成立 若f(x)是可导的周期为T的函数,则其导函数f'(x)也是。反推不成立 f(x)是可导的周期为T的函数,则其导函数f(x)也是。反推不成立
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值