导数与函数的性质
- 可导与连续的关系
∗ ∗ f ( x ) 在 x 0 处可导 ⇒ f ( x ) 在 x 0 处连续,反推不对 ∗ ∗ **f(x)在x_{0} 处可导\Rightarrow f(x)在x_{0} 处连续,反推不对** ∗∗f(x)在x0处可导⇒f(x)在x0处连续,反推不对∗∗ - 导函数要么连续,要么振荡间断,不可能有其他类型的间断点
- 导函数的奇偶性 若 f ( x ) 是可导的奇(偶)函数,则其导函数 f ′ ( x ) 是偶(奇)函数。反推不成立 若f(x)是可导的奇(偶)函数,则其导函数f'(x)是偶(奇)函数。反推不成立 若f(x)是可导的奇(偶)函数,则其导函数f′(x)是偶(奇)函数。反推不成立
- 导函数的周期性 若 f ( x ) 是可导的周期为 T 的函数,则其导函数 f ′ ( x ) 也是。反推不成立 若f(x)是可导的周期为T的函数,则其导函数f'(x)也是。反推不成立 若f(x)是可导的周期为T的函数,则其导函数f′(x)也是。反推不成立