今日收获:最长递增子序列,最长连续递增序列,最长重复子数组
1. 最长递增子序列
题目链接:300. 最长递增子序列 - 力扣(LeetCode)
思路:
(1)dp数组表示:以nums[i]为结尾的最长子序列长度;
(2)初始化:dp数组的每一个元素值为1;
(3)遍历顺序:遍历nums数组寻找子序列的结尾,里面一层循环j是遍历子序列的起点;
(4)递推公式:如果nums[i]大于nums[j],那么dp[i]和dp[j]加1对比取最大值作为当前位置的dp数组值。
方法:
class Solution {
public int lengthOfLIS(int[] nums) {
int len=nums.length;
// 表示以num[i]为结尾的最长子序列的长度
int[] dp=new int[len];
// 初始化
for (int i=0;i<len;i++){
dp[i]=1;
}
for (int i=1;i<len;i++){
for (int j=0;j<i;j++){ // 遍历子序列的起点
if (nums[i]>nums[j]){
dp[i]=Math.max(dp[i],dp[j]+1);
}
}
}
// 求最大子序列长度
int max=0;
for (int i=0;i<len;i++){
max=max>dp[i]?max:dp[i];
}
return max;
}
}
2. 最长连续递增序列
题目链接:674. 最长连续递增序列 - 力扣(LeetCode)
思路:和递增子序列的区别在于必须是连续的,只要后一位大于前一位,当前位置的最大连续子序列就是前一位加1。
方法:
class Solution {
public int findLengthOfLCIS(int[] nums) {
int len=nums.length;
int[] dp=new int[len];
// 初始化
for (int i=0;i<len;i++){
dp[i]=1;
}
int max=1;
for (int i=1;i<len;i++){
if (nums[i]>nums[i-1]){
dp[i]=dp[i-1]+1;
}
max=Math.max(max,dp[i]);
}
return max;
}
}
3. 最长重复子数组
题目链接:718. 最长重复子数组 - 力扣(LeetCode)
思路:
(1)dp数组定义:dp[i][j]表示两个数组中 i-1,j-1 位置的最大重复子序列长度。
(2)初始化:数组的第一行和第一列都为0。
(3)遍历顺序:分别从左到右遍历两个数组。
(4)递推公式:如果两个数组中 i-1,j-1 位置的元素相等,则当前位置在左上角元素值的基础上加1(相当于两个数组的下标都向前移动了一位)。
方法:
class Solution {
public int findLength(int[] nums1, int[] nums2) {
int len1=nums1.length;
int len2=nums2.length;
// dp[i][j]表示两个数组i-1,j-1位置的最长重复组数组长度
int[][] dp=new int[len1+1][len2+1];
int max=0;
for (int i=1;i<=len1;i++){
for (int j=1;j<=len2;j++){
if (nums1[i-1]==nums2[j-1]){
dp[i][j]=dp[i-1][j-1]+1;
}
max=Math.max(max,dp[i][j]);
}
}
return max;
}
}