算法打卡:第九章 动态规划part10

今日收获:最长递增子序列,最长连续递增序列,最长重复子数组

1. 最长递增子序列

题目链接:300. 最长递增子序列 - 力扣(LeetCode)

思路:

(1)dp数组表示:以nums[i]为结尾的最长子序列长度;

(2)初始化:dp数组的每一个元素值为1;

(3)遍历顺序:遍历nums数组寻找子序列的结尾,里面一层循环j是遍历子序列的起点;

(4)递推公式:如果nums[i]大于nums[j],那么dp[i]和dp[j]加1对比取最大值作为当前位置的dp数组值。

方法:

class Solution {
    public int lengthOfLIS(int[] nums) {
        int len=nums.length;

        // 表示以num[i]为结尾的最长子序列的长度
        int[] dp=new int[len];

        // 初始化
        for (int i=0;i<len;i++){
            dp[i]=1;
        }

        for (int i=1;i<len;i++){
            for (int j=0;j<i;j++){  // 遍历子序列的起点
                if (nums[i]>nums[j]){
                    dp[i]=Math.max(dp[i],dp[j]+1);
                }
            }
        }

        // 求最大子序列长度
        int max=0;
        for (int i=0;i<len;i++){
            max=max>dp[i]?max:dp[i];
        }
        return max;
    }
}

2. 最长连续递增序列

题目链接:674. 最长连续递增序列 - 力扣(LeetCode)

思路:和递增子序列的区别在于必须是连续的,只要后一位大于前一位,当前位置的最大连续子序列就是前一位加1。

方法:

class Solution {
    public int findLengthOfLCIS(int[] nums) {
        int len=nums.length;

        int[] dp=new int[len];

        // 初始化
        for (int i=0;i<len;i++){
            dp[i]=1;
        }

        int max=1;
        for (int i=1;i<len;i++){
            if (nums[i]>nums[i-1]){
                dp[i]=dp[i-1]+1;
            }
            max=Math.max(max,dp[i]);
        }

        return max;
    }
}

3. 最长重复子数组

题目链接:718. 最长重复子数组 - 力扣(LeetCode)

思路:

(1)dp数组定义:dp[i][j]表示两个数组中 i-1,j-1 位置的最大重复子序列长度。

(2)初始化:数组的第一行和第一列都为0。

(3)遍历顺序:分别从左到右遍历两个数组。

(4)递推公式:如果两个数组中 i-1,j-1 位置的元素相等,则当前位置在左上角元素值的基础上加1(相当于两个数组的下标都向前移动了一位)。

方法:

class Solution {
    public int findLength(int[] nums1, int[] nums2) {
        int len1=nums1.length;
        int len2=nums2.length;

        // dp[i][j]表示两个数组i-1,j-1位置的最长重复组数组长度
        int[][] dp=new int[len1+1][len2+1];

        int max=0;
        for (int i=1;i<=len1;i++){
            for (int j=1;j<=len2;j++){
                if (nums1[i-1]==nums2[j-1]){
                    dp[i][j]=dp[i-1][j-1]+1;
                }
                max=Math.max(max,dp[i][j]);
            }
        }

        return max;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值