毫米波雷达学习(五)——角度估计

本文深入探讨毫米波雷达的角度估算原理,解释了如何利用相位差来确定物体角度,并讨论了当有多个物体具有相同距离和速度时的处理方法。通过增加RX天线数量,可以解析出多个物体的到达角,从而实现更精确的目标定位。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

系列文章目录

毫米波雷达学习(一)——范围估计
毫米波雷达学习(二)——IF信号相位
毫米波雷达学习(三)——速度估计
毫米波雷达学习(四)——系统设计讨论
毫米波雷达学习(五)——角度估计


文章目录

  • 系列文章目录
  • 简介
  • 角度估算
  • 雷达前方有两个物体


简介

先前我们从距离和速度分析,这篇文章将从角度入手。所以雷达是前方有一个物体,它是如何估算这个角度呢?不同角度存在多个物体但是他们速度与距离相同,会怎样?雷达的可以观察的最大角度由什么决定?角分辨率又取决于什么?

角度估算

在先前测量相位变换的时候,微小的距离变化可以导致相位变化,角度估算也是类似的概念,需要至少两根RX天线,利用每根天线的差分距离。
相位变化:
在这里插入图片描述
在这里插入图片描述

角度估计:
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

由上图可以看出,额外距离=两个接收天线的距离 · sinθ(θ是到达角)

发射天线发射一个线性调频脉冲帧,每个天线接收数据,并处理该数据,创建一个2D-FFT矩阵,其中包含物体距离与速度的对应峰值。

讲了半天究竟该如何求到达角呢?
在这里插入图片描述
我们可以看到角度与w的不是线性关系,从sinθ函数的角度开始,我们都学过等价无穷小,知道sinθ的θ在接近0时可以等效为θ,而在接近90度的时候误差就非常大了。所以物体只有在雷达正前方也就是0度的时候角度估算才能达到最佳值,当然由于噪声,估算准确性会下降。

前面我们学过,由于速度的不模糊测量要求,也就是相位变化不小于180度,那么将180代入公式w值,即可推出θ的最大值。

在这里插入图片描述

雷达前方有两个物体

当雷达前方两个物体,且他们相对于雷达具有相同的距离和速度,那么这两个物体在2D-FFT相同的距离速度单元中。
在这里插入图片描述
这是他们的2D-FFT,其2D-FFT中有单个峰值,但是峰值处的信号将由两个向量叠加,这样先前的相位比较技术就无法使用了。

在这里插入图片描述
如何解决这个问题呢?我们将RX天线从两个增加到N个,他们的二维FFT将在同一个位置有一个峰值,这个系列峰值的信号将创建一个包含两个相位的离散信号,如图。
在这里插入图片描述

然后通过FFT读取这两个峰值的位置,反推出两个物体的到达角。

在这里插入图片描述

我会坚持学习并更新,非常感谢各位的观看。

### FMCW毫米波雷达角度测量原理及实现 FMCW毫米波雷达角度测量依赖于多天线阵列接收信号的能力以及基于这些信号的相位差分析。以下是详细的原理和实现方式: #### 1. 测角核心概念 角度测量的核心在于利用多天线阵列接收到的目标回波信号之间的**相位差**或**波束方向信息**来推导目标的位置关系。具体来说,当多个天线单元接收到同一目标反射回来的信号时,由于各天线位置不同,信号到达时间会存在差异,从而引起相位变化[^2]。 #### 2. 数学建模与算法描述 假设雷达系统中有 \(N\) 个接收天线排列成均匀线性阵列 (ULA),相邻两天线间距为 \(d\)。对于距离雷达一定远近的一个目标,其相对于阵列法向的方向可以由方位角 \(\theta\) 表示,则第 \(n\) 号天线上的信号相比第一个天线会有如下形式的额外路径延迟: \[ \Delta t_n = \frac{d(n-1)\sin{\theta}}{c} \] 其中 \(c\) 是光速。由此产生的相位差可表示为: \[ \phi_n = 2\pi f_c \cdot \Delta t_n = \frac{2\pi d}{\lambda} (n-1) \sin{\theta}, \quad n=1,\dots,N, \] 这里 \(f_c\) 和 \(\lambda\) 分别代表载波频率及其对应的波长。 通过对上述方程组求解即可得到目标所在的空间角度参数——即通常所说的水平面内的方位角 (\(azimuth\)) 或垂直面上的仰角/俯视角 (\(elevation\))。 #### 3. 实际应用中的技术手段 为了提高精度并减少误差影响,在实际工程设计中常采用以下几种策略和技术手段来进行更精确有效的角度估计: ##### (1)FFT-Based DOA Estimation 方法 快速傅里叶变换(Fast Fourier Transform, FFT)被广泛应用于频谱分析领域当中。通过对接收数据做二维或者更高维度下的离散傅立叶转换操作后能够直观观察到能量分布情况进而定位最强响应对应的具体空间取向。 ```python import numpy as np def fft_based_doa_estimation(received_signal_matrix): """ Perform Direction of Arrival estimation using Fast Fourier Transform. Parameters: received_signal_matrix : ndarray Matrix containing signals from multiple antennas over time samples. Returns: estimated_angles : list[float] List of angles corresponding to detected targets' directions. """ spectrum = np.fft.fftshift(np.abs(np.fft.fftn(received_signal_matrix)), axes=-1) peaks_indices = find_peaks(spectrum)[-1].tolist() angular_resolution = calculate_angular_res(len(received_signal_matrix)) estimated_angles = [(idx - len(peaks_indices)/2)*angular_resolution for idx in peaks_indices] return estimated_angles ``` ##### (2)MUSIC Algorithm 多重信号分类(Multiple Signal Classification, MUSIC)是一种高分辨率超分辨DOA估计算法之一。它不需要预先知道源数目的情况下也能提供较好的性能表现尤其适合复杂场景下区分密集靠近物体的情况。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不知何人

万分感谢诸位观看

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值