Python——基于ERA5数据的饱和水汽压差(VPD)批量计算(Clausius-Clapeyron 克劳修斯-克拉伯龙关系)

一、前言

之前我发布过基于CRU数据和Goff-Gratch公式计算VPD的博客,见下方:

基于CRU数据计算VPD的博客

但是,CRU数据的分辨率还是较为粗糙(0.5°×0.5°),而ERA5 land数据集分辨率能很好地满足我的需求(0.1°×0.1°)。但是,ERA5 land数据集并不提供水汽压和湿度变量供于下载,这导致利用Goff-Gratch公式很难进行计算。

结合近期文献阅读和整理,这里提供另一种既具权威性也易操作的方法供大家参考。

(注:这里所指的权威性主要指使用该方法的期刊等级和被引量,具体见文末)


二、定义

饱和水汽压差(Vapor Pressure Deficit,简称VPD) 是指在一定温度下,饱和水汽压与空气中的实际水汽压之间的差值。VPD对于植被生理状态具有重要影响。

简言之,VPD =

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值