今天刷到一个填算式的问题,发现用dfs处理特别的容易!!!
填算式问题是什么呢!
先给我们一个式子 比如说:☆☆☆ + ☆☆☆ = ☆☆☆ 比如:596 + 142 = 738
题目给的条件是这填式子的这几个数字是不可以重复的,所以我们这里有9个空,那么我们所需要填的数字就是
1,2,3,4,5,6,7,8,9
好了上代码
public class dfs1 {
//因为我们的数字是不能够重复的,所以我们需要一个数组来表示这个数字是否被访问
//下标 0对应数字1 下表1对应数字2.。。。。。。
public static int[] vis = new int[]{0, 0, 0, 0, 0, 0, 0, 0, 0};
//这个a数组,当我们用dfs去写填算式问题的时候,有多少个空位,我们就定义多大
//比如说这次我们有9个数字,所以定义了9
public static int[] a = new int[9];
public static int count = 0;
public static void main(String[] args) {
dfs(a, 0);
System.out.println(count);
}
public static void dfs(int[] a, int index) {
//因为index是从0开始的所以说如果index==9说明已经有9个数字了
if (index == 9) {
//这里的判断,算式是什么就怎么写
☆☆☆+ ☆☆☆ = ☆☆☆
int sum = a[0] * 100 + a[1] * 10 + a[2] + a[3] * 100 + a[4] * 10 + a[5];
if (sum == a[6] * 100 + a[7] * 10 + a[8]) {
count++;
System.out.printf("%d + %d = %d\n", (a[0] * 100 + a[1] * 10 + a[2]), (a[3] * 100 + a[4] * 10 + a[5])
, (a[6] * 100 + a[7] * 10 + a[8]));
}
return;
} else {
for (int i = 1; i <= 9; i++) {
//因为数字不能重复,所以要vis==0才可以dfs搜索
if (vis[i - 1] == 0) {
vis[i - 1] = 1; //将已经访问了的数字设为已访问
a[index] = i; //将数字赋给a[index]
dfs(a, index + 1); //继续深度搜索
vis[i - 1] = 0; //从深度搜索出来之后,再将这个数字设定为没有访问
}
}
}
}
}
试一下这一道题