CNN:一个更合理的神经网络结构来有效处理图片数据。
CNN包括输入层、卷积层、池化层和全连接层
输入层: 一般代表一张图片的像素矩阵,输入层一般代表一张图像的三维像素矩阵,大小通常为[公式]或者[公式]的矩阵,其中这三个维度分别图像的宽度、长度、深度。深度也称为通道数,在彩色图像中有R、G、B三种色彩通道(红绿蓝),而黑白图像只有一种色彩通道。
卷积层: CNN中最重要的一层,通过卷积操作获取局部区域信息
池化层: 对数据降采样,缩小数据规模,收集关键数据,提高计算速度
卷积过程
kernel与filter的不同:
kernel卷积核,filter滤波器
卷积核:二维的矩阵
滤波器:多个卷积核组成的三维矩阵,多出的一维是通道。
一个“Kernel”更倾向于是2D的权重矩阵。而“filter”则是指多个Kernel堆叠的3D结构。如果是一个2D的filter,那么两者就是一样的。但是一个3Dfilter,在大多数深度学习的卷积中,它是包含kernel的。每个卷积核都是独一无二的,主要在于强调输入通道的不同方面。
一维卷积通常用于时间序列数据分析,一维数据输入可以具有多个通道。滤波器只能沿一个方向移动,因此输出为1D。
1D、2D、3D卷积
转置卷积
可分离卷积
空洞卷积
可变形卷积:不再是正方形或者矩形,而是可变形的,如牛羊什么的