Spark RDD案例:分组排行榜

本文指导如何使用Scala和Spark在Maven项目中处理大数据,包括新建项目、添加依赖、创建日志配置和单例对象。通过HDFS读取grades.txt文件,执行分组、排序并输出TopN成绩。涉及的技术有Scala编程、Spark RDD操作和Maven构建工具。
摘要由CSDN通过智能技术生成

一、提出任务

  • 分组求TopN是大数据领域常见的需求,主要是根据数据的某一列进行分组,然后将分组后的每一组数据按照指定的列进行排序,最后取每一组的前N行数据。
  • 进入/home目录,创建grades.txt文件,上传到HDFS上/input目录
    在这里插入图片描述

二、完成任务

(一)新建Maven项目

  • 设置项目信息(项目名、保存位置、组编号、项目编号)
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

  • 单击【Finish】按钮
    在这里插入图片描述

  • java目录改成scala目录
    在这里插入图片描述

(二)添加相关依赖和构建插件

  • pom.xml文件里添加依赖与Maven构建插件
    在这里插入图片描述
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
         http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>net.qzj.rdd</groupId>
    <artifactId>GradeTopN</artifactId>
    <version>1.0-SNAPSHOT</version>

    <dependencies>
        <dependency>
            <groupId>org.scala-lang</groupId>
            <artifactId>scala-library</artifactId>
            <version>2.11.12</version>
        </dependency>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-core_2.11</artifactId>
            <version>2.1.1</version>
        </dependency>
    </dependencies>
    <build>
        <sourceDirectory>src/main/scala</sourceDirectory>
        <plugins>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-assembly-plugin</artifactId>
                <version>3.3.0</version>
                <configuration>
                    <descriptorRefs>
                        <descriptorRef>jar-with-dependencies</descriptorRef>
                    </descriptorRefs>
                </configuration>
                <executions>
                    <execution>
                        <id>make-assembly</id>
                        <phase>package</phase>
                        <goals>
                            <goal>single</goal>
                        </goals>
                    </execution>
                </executions>
            </plugin>
            <plugin>
                <groupId>net.alchim31.maven</groupId>
                <artifactId>scala-maven-plugin</artifactId>
                <version>3.3.2</version>
                <executions>
                    <execution>
                        <id>scala-compile-first</id>
                        <phase>process-resources</phase>
                        <goals>
                            <goal>add-source</goal>
                            <goal>compile</goal>
                        </goals>
                    </execution>
                    <execution>
                        <id>scala-test-compile</id>
                        <phase>process-test-resources</phase>
                        <goals>
                            <goal>testCompile</goal>
                        </goals>
                    </execution>
                </executions>
            </plugin>
        </plugins>
    </build>
</project>

(三)创建日志属性文件

  • 在资源文件夹里创建日志属性文件 - log4j.properties
    在这里插入图片描述
    在这里插入图片描述

(四)创建分组排行榜单例对象

  • net.qzj.rdd包里创建GradeTopN单例对象
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

(五)本地运行程序,查看结果

  • 在控制台查看输出结果
    在这里插入图片描述

(六)交互式操作查看中间结果

1.读取成绩文件得到RDD

  • 执行命令:val lines = sc.textFile("hdfs://master:9000/input/grades.txt")
    在这里插入图片描述

2.利用映射算子生成二元组构成的RDD

val grades = lines.map(line => {
          val fields = line.split(" ")
          (fields(0), fields(1))
        })
  • 执行上述代码
    在这里插入图片描述

3.按键分组得到新的二元组构成的RDD

  • 执行命令:val groupGrades = grades.groupByKey()
    在这里插入图片描述

4.按值排序,取前三

  • 执行代码
    在这里插入图片描述

5.按指定格式输出结果

  • 执行代码
    在这里插入图片描述
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值