一、提出任务
- 分组求TopN是大数据领域常见的需求,主要是根据数据的某一列进行分组,然后将分组后的每一组数据按照指定的列进行排序,最后取每一组的前N行数据。
- 进入
/home
目录,创建grades.txt
文件,上传到HDFS上/input
目录
二、完成任务
(一)新建Maven项目
-
设置项目信息(项目名、保存位置、组编号、项目编号)
-
单击【Finish】按钮
-
将
java
目录改成scala
目录
(二)添加相关依赖和构建插件
- 在
pom.xml
文件里添加依赖与Maven构建插件
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>net.qzj.rdd</groupId>
<artifactId>GradeTopN</artifactId>
<version>1.0-SNAPSHOT</version>
<dependencies>
<dependency>
<groupId>org.scala-lang</groupId>
<artifactId>scala-library</artifactId>
<version>2.11.12</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.11</artifactId>
<version>2.1.1</version>
</dependency>
</dependencies>
<build>
<sourceDirectory>src/main/scala</sourceDirectory>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-assembly-plugin</artifactId>
<version>3.3.0</version>
<configuration>
<descriptorRefs>
<descriptorRef>jar-with-dependencies</descriptorRef>
</descriptorRefs>
</configuration>
<executions>
<execution>
<id>make-assembly</id>
<phase>package</phase>
<goals>
<goal>single</goal>
</goals>
</execution>
</executions>
</plugin>
<plugin>
<groupId>net.alchim31.maven</groupId>
<artifactId>scala-maven-plugin</artifactId>
<version>3.3.2</version>
<executions>
<execution>
<id>scala-compile-first</id>
<phase>process-resources</phase>
<goals>
<goal>add-source</goal>
<goal>compile</goal>
</goals>
</execution>
<execution>
<id>scala-test-compile</id>
<phase>process-test-resources</phase>
<goals>
<goal>testCompile</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>
</project>
(三)创建日志属性文件
- 在资源文件夹里创建日志属性文件 -
log4j.properties
(四)创建分组排行榜单例对象
- 在
net.qzj.rdd
包里创建GradeTopN
单例对象
(五)本地运行程序,查看结果
- 在控制台查看输出结果
(六)交互式操作查看中间结果
1.读取成绩文件得到RDD
- 执行命令:
val lines = sc.textFile("hdfs://master:9000/input/grades.txt")
2.利用映射算子生成二元组构成的RDD
val grades = lines.map(line => {
val fields = line.split(" ")
(fields(0), fields(1))
})
- 执行上述代码
3.按键分组得到新的二元组构成的RDD
- 执行命令:
val groupGrades = grades.groupByKey()
4.按值排序,取前三
- 执行代码
5.按指定格式输出结果
- 执行代码