(5)多体量子态与统计力学基础

1.多体系统量子态与量子算符

1.1量子态系数

例:两个自旋构成的基矢为四个4维向量, 可定义为
∣ 0 ⟩ ∣ 0 ⟩ , ∣ 0 ⟩ ∣ 1 ⟩ , ∣ 1 ⟩ ∣ 0 ⟩ , ∣ 1 ⟩ ∣ 1 ⟩ |0\rangle|0\rangle,|0\rangle|1\rangle,|1\rangle|0\rangle,|1\rangle|1\rangle 00,01,10,11
其中, ∣ i ⟩ ∣ j ⟩ = ∣ i j ⟩ = ∣ i ⟩ ⊗ ∣ j ⟩ ( ⊗ |i\rangle|j\rangle=|i j\rangle=|i\rangle \otimes|j\rangle(\otimes ij=ij=ij( 称为直积、张量积、外积或克伦内克积, ⊗ \otimes 符号可省略 ), 例如:
∣ 1 ⟩ = [ 1 0 ] T |1\rangle=\left[\begin{array}{ll}1 & 0\end{array}\right]^{T} 1=[10]T
∣ 11 ⟩ = [ 1 0 ] T ⨂ [ 1 0 ] T = [ 1 0 0 0 ] T |11\rangle=\left[\begin{array}{ll}1 & 0\end{array}\right]^{T}\bigotimes\left[\begin{array}{ll}1 & 0\end{array}\right]^{T}=\left[\begin{array}{ll}1 & 0 & 0 & 0\end{array}\right]^{T} 11=[10]T[10]T=[1000]T
( 等号代表左边态的系数等于右边的张量)
任意的二自旋量子态可写成基矢的线性叠加:
∣ φ ⟩ = φ 00 ∣ 00 ⟩ + φ 01 ∣ 01 ⟩ + φ 10 ∣ 10 ⟩ + φ 11 ∣ 11 ⟩ = ∑ i j = 0 1 φ i j ∣ i j ⟩ |\varphi\rangle=\varphi_{00}|00\rangle+\varphi_{01}|01\rangle+\varphi_{10}|10\rangle+\varphi_{11}|11\rangle=\sum_{i j=0}^{1} \varphi_{i j}|i j\rangle φ=φ0000+φ0101+φ1010+φ1111=ij=01φijij
二自旋量子态 ∣ φ ⟩ |\varphi\rangle φ 的系数可看作是 4 × 1 4 \times 1 4×1 的向量[ φ 00 φ 01 φ 10 φ 11 ] T , \left.\varphi_{00} \quad \varphi_{01} \quad \varphi_{10} \quad \varphi_{11}\right]^{T}, φ00φ01φ10φ11]T,
2 × 2 2 \times 2 2×2 的矩阵 [ φ 00 φ 01 φ 10 φ 11 ] , \left[\begin{array}{cc}\varphi_{00} & \varphi_{01} \\ \varphi_{10} & \varphi_{11}\end{array}\right], [φ00φ10φ01φ11], 二者相差一个reshape操作

1.2单体算符的运算

对于 N N N自旋体系,对应希尔伯特空间维数为 2 N 2^N 2N ,即量子态的系数为 2 N 2^N 2N维张量( N N N阶张量,有 N N N个指标,每个指标的维数是2,总维数是 2 N 2^N 2N),算符的系数为 2 N 2^N 2N × 2 N 2^N 2N 维张量(2 N N N阶张量,有2 N N N个指标,每个指标的维数是2)
图形表示:

量子态

在这里插入图片描述

量子算符

在这里插入图片描述


定义单体算符:作用到某一个自旋上的算符,例如泡利算符,系数维数为2 × 2


单体算符作用到多体量子态的规则(以三自旋系统为例):定义在第1个自旋空间中的算子 O ^ ( 1 ) \hat{O}^{(1)} O^(1)(即该算子仅作用在第1个自旋上),其对应的系数维数为2 × 2 ,三自旋量子态 ∣ φ ⟩ |\varphi\rangle φ对应的系数维数为2 × 2 × 2,将 O ^ ( 1 ) \hat{O}^{(1)} O^(1)作用到 ∣ φ ⟩ |\varphi\rangle φ上的公式可写为:
∣ φ ′ ⟩ = O ^ ( 1 ) ∣ φ ⟩ = O ^ ( 1 ) ⊗ I ^ ( 2 ) ⊗ I ^ ( 3 ) ∣ φ ⟩ |\varphi^{'}\rangle = \hat{O}^{(1)}|\varphi\rangle = \hat{O}^{(1)}\otimes\hat{I}^{(2)}\otimes\hat{I}^{(3)}|\varphi\rangle φ=O^(1)φ=O^(1)I^(2)I^(3)φ
其中, I ^ ( n ) \hat{I}^{(n)} I^(n)为定义在第n个自旋空间的单位算符(单位算符的系数矩阵为单位阵)


注:对于多自旋态,严格而言,无法定义对某一个自旋的单独操作,相关算符也需定义在多自旋希尔伯特空间中; O ^ ( 1 ) ⊗ I ^ ( 2 ) ⊗ I ^ ( 3 ) \hat{O}^{(1)}\otimes\hat{I}^{(2)}\otimes\hat{I}^{(3)} O^(1)I^(2)I^(3)类似的与单位阵的直积可看作是单体算符需满足的形式。


在公式 ∣ φ ′ ⟩ = O ^ ( 1 ) ∣ φ ⟩ = O ^ ( 1 ) ⊗ I ^ ( 2 ) ⊗ I ^ ( 3 ) ∣ φ ⟩ |\varphi^{'}\rangle = \hat{O}^{(1)}|\varphi\rangle = \hat{O}^{(1)}\otimes\hat{I}^{(2)}\otimes\hat{I}^{(3)}|\varphi\rangle φ=O^(1)φ=O^(1)I^(2)I^(3)φ中, O ^ ( 0 ) ⊗ I ^ ( 1 ) ⊗ I ^ ( 2 ) \hat{O}^{(0)}\otimes\hat{I}^{(1)}\otimes\hat{I}^{(2)} O^(0)I^(1)I^(2)的维数为 2 N 2^N 2N × 2 N 2^N 2N,可以以指标收缩的形式作用到维数为 2 N 2^N 2N的量子态 ∣ φ ⟩ |\varphi\rangle φ上(矩阵与一个向量做一个矩阵乘)
但是,我们实际上不用按上述方式进行 2 N 2^N 2N × 2 N 2^N 2N维矩阵与 2 N 2^N 2N维向量的矩阵积计算,而是作如下计算:
∣ φ ⟩ |\varphi\rangle φ ∣ φ ′ ⟩ |\varphi^{'}\rangle φ的系数分别为三阶张量 φ i j k \varphi_{ijk} φijk φ i ′ j k ′ \varphi_{i^{'}jk}^{'} φijk
O ^ ( 1 ) \hat{O}^{(1)} O^(1)的系数为二阶矩阵 O i i ′ ( 1 ) O^{(1)}_{ii^{'}} Oii(1),则有如下公式:
φ i ′ j k ′ = ∑ i O i ′ i ( 1 ) φ i j k \varphi_{i^{'}jk}^{'} = \sum_iO^{(1)}_{i^{'}i}\varphi_{ijk} φijk=iOii(1)φijk
将定义在第n个自旋的算符 O ^ ( n ) \hat{O}^{(n)} O^(n)作用到自旋多体态上,仅需将算符与第n个指标进行收缩,对应的图形表示如图:
在这里插入图片描述
:虽然仅进行第n个指标的收缩,但实际上,所有张量元可能被改变,并非仅有第n个指标对应的张量元发生改变,无法定义第n个指标对应的张量元,这与“无法定义对某一个自旋的单独操作”这一事实是一致的

1.3多体算符的运算

对于多体算符,当该算符可以写成多个定义在不同空间的单体算符的直积时,计算算符作用到多体态上时,仅需进行多次单体算符的作用即可


由于单体算符定义在不同空间,算符之间相互对易(即可以交换作用的顺序, O ^ ( m ) O ^ ( n ) = O ^ ( n ) O ^ ( m ) ⇔ [ O ^ ( m ) , O ^ ( n ) ] = 0 \hat{O}^{(m)}\hat{O}^{(n)} = \hat{O}^{(n)}\hat{O}^{(m)} \Leftrightarrow[\hat{O}^{(m)},\hat{O}^{(n)}] = 0 O^(m)O^(n)=O^(n)O^(m)[O^(m),O^(n)]=0),故作用的顺序不影响结果。


例:将定义在第1个和第2个自旋空间中的算符 O ^ = O ^ ( 1 ) ⊗ O ^ ( 2 ) \hat{O} = \hat{O}^{(1)}\otimes \hat{O}^{(2)} O^=O^(1)O^(2)作用到三自旋态 ∣ φ ⟩ |\varphi\rangle φ上,得到的量子态 ∣ φ ′ ⟩ |\varphi^{'}\rangle φ,相应的系数满足:
φ i ′ j k ′ = ∑ i j O i ′ i ( 1 ) O j ′ j ( 1 ) φ i j k \varphi^{'}_{i^{'}jk} = \sum_{ij}O^{(1)}_{i^{'}i}O^{(1)}_{j^{'}j}\varphi_{ijk} φijk=ijOii(1)Ojj(1)φijk


一般情况下的图形表示如图:
在这里插入图片描述


如果算符不能分解成多个单体算符直积的形式,则根据分解的情况进行收缩;如果存在不同算符作用在相同自旋上,则重复上述规则,由下至上依次将各个算符所用到量子态上


下图给出一个图形表示示例:
在这里插入图片描述

1.4拓展:多体算符

如果量子算符为幺正算符 U U † = I UU^\dag = I UU=I或者说算符的系数为幺正矩阵),则这些算符构成一个作用在多体态上的大的幺正操作,称之为量子线路(注:特殊情况下可不满足幺正性)
量子线路是可运行于量子计算机的模型(类似于逻辑门线路与经典计算机间的关系),张量网络为量子线路提供一个给定基底下的数学表示.


作用在8个自旋上,每个自旋初态为0
在这里插入图片描述

2.经典热力学基础

对于经典平衡态,系综理论(描述经典热力学的经典理论)的核心是:对于一个全同粒子构成的系统,该系统处于某一种状态(或构型,记为( s 1 , s 2 , . . . s_1,s_2,... s1,s2,...))的概率𝑷 ,由该状态的能量𝑬决定(设玻尔兹曼常数与普朗克常数为1),满足:
P ( s 1 , s 2 , . . . ; β ) = e − β E ( s 1 , s 2 , . . . ) Z … … ( 1 ) P(s_1,s_2,...;\beta) = \frac{e^{-\beta E(s_1,s_2,...)}}{Z} ……(1) P(s1,s2,...;β)=ZeβE(s1,s2,...)1
其中:
β = 1 / T \beta = 1/T β=1/T(物理中为倒温度,在机器学习中为超参数)
Z Z Z被称为配分函数(partition function),等于所有可能构型概率之和,满足
Z = ∑ s 1 , s 2 , . . . e − β E ( s 1 , s 2 , . . . ) Z = \sum_{s_1,s_2,...}e^{-\beta E(s_1,s_2,...)} Z=s1,s2,...eβE(s1,s2,...) Z Z Z可理解为概率的归一化因子。
式(1)在机器学习中被称为玻尔兹曼机(Boltzmann machine)。


热力学量即对应物理量的概率平均值:
O ( β ) = ∑ s 1 , s 2 , . . . P ( s 1 , s 2 , . . . ; β ) O ( s 1 , s 2 , . . . ) O(\beta )=\sum_{s_1,s_2,...}P(s_1,s_2,...;\beta)O(s_1,s_2,...) O(β)=s1,s2,...P(s1,s2,...;β)O(s1,s2,...)其中: O ( s 1 , s 2 , . . . ) O(s_1,s_2,...) O(s1,s2,...)为在当前构型下对应的物理观测量的取值。
可见,建立描述给定物理系统热力学性质的关键,在于建立能量𝑬与状态之间的函数关系 E ( s 1 , s 2 , . . . ) E(s_1,s_2,...) E(s1,s2,...)


例:
定义Ising模型(最简单的概率统计模型):由N个Ising自旋构成一个图(graph),如:
在这里插入图片描述

每个Ising自旋为图中一个节点(node),其可取状态 s i s_i si为1或-1;对于给定状态,其能量满足:
E ( s 1 , s 2 , . . . ) = ∑ ⟨ i , j ⟩ J i j s i s j E(s_1,s_2,...) = \sum_{\langle i,j\rangle}J_{ij}s_is_j E(s1,s2,...)=i,jJijsisj
其中, ⟨ i , j ⟩ \langle i,j\rangle i,j代表图中任意一对相连的Ising自旋, J i j J_{ij} Jij称为对应连接的耦合系数(图中求和的项数等于图中边的个数,每条边上对应一个 J i j J_{ij} Jij
故,Ising模型由图(节点与边)定义;当每个节点可取的状态S数大于2时(比如:状态数取1,0,-1等),模型推广为S态Potts模型;后面我们会介绍如何使用张量网络计算Ising或Potts模型热力学

:这里并不建议将Ising模型当作一种物理上的存在,它应是用来近似描述一大类物理现象的一个数学模型,因而这里使用了概率图理论的术语来描述Ising模型;物理上的概念并不是物理实在自身,它们都是用来解释已知物理实在、预言未知物理实在的数学模型而已

3.量子格点模型

将经典热力学推广到量子热力学


3.1热力学基础

描述量子系统的热力学理论,应与经典热力学理论相容。
量子系统的热力学由有限温密度算子给出,定义为:
ρ ^ ( β ) = e − β H ^ / Z \hat{\rho}(\beta)=e^{-\beta \hat{H}} / Z ρ^(β)=eβH^/Z
其中, H ^ \widehat{H} H 系统哈密顿量(在经典力学里面哈密顿量起源于哈密顿力学), Z \quad Z Z量子配分函数
对于量子系统,给定状态(量子态)下的能量满足(能量与 H ^ \widehat{H} H 的关系):
E ( s 1 , s 2 , … ) = ⟨ s 1 s 2 … ∣ H ^ ∣ s 1 s 2 … ⟩ E\left(s_{1}, s_{2}, \ldots\right)=\left\langle s_{1} s_{2} \ldots|\widehat{H}| s_{1} s_{2} \ldots\right\rangle E(s1,s2,)=s1s2H s1s2 H ^ \widehat{H} H 在构型下的能量)
与经典热力学理论相同, 定义处于 ∣ s 1 s 2 … ⟩ \left|s_{1} s_{2} \ldots\right\rangle s1s2 的概率为 P ( s 1 , s 2 , … ; β ) = e − β E ( s 1 , s 2 , … ) Z P\left(s_{1}, s_{2}, \ldots ; \beta\right)=\frac{e^{-\beta E\left(s_{1}, s_{2}, \ldots\right)}}{Z} P(s1,s2,;β)=ZeβE(s1,s2,)且配分函数满足 Z = ∑ s 1 , s 2 , … e − β E ( s 1 , s 2 , … ) Z=\sum_{s_{1}, s_{2}, \ldots} e^{-\beta E\left(s_{1}, s_{2}, \ldots\right)} Z=s1,s2,eβE(s1,s2,)
可见定义量子模型即定义哈密顿量


将能量表达式代入得量子配分函数
Z = ∑ s 1 s 2 … e − β ⟨ s 1 s 2 … ∣ H ^ ∣ s 1 s 2 ⋯   ⟩ Z=\sum_{s_{1} s_{2} \ldots} e^{-\beta\langle s_{1} s_{2} \ldots|\hat{H}| s_{1} s_{2} \cdots\rangle} Z=s1s2eβs1s2H^s1s2根据基矢的正交完备性 Σ s 1 s 2 … ∣ s 1 s 2 … ⟩ ⟨ s 1 s 2 … ∣ = I , \Sigma_{s_{1} s_{2} \ldots}\left|s_{1} s_{2} \ldots\right\rangle\left\langle s_{1} s_{2} \ldots\right|=I, Σs1s2s1s2s1s2=I, 得:
Z = ∑ s 1 s 2 … ⟨ s 1 s 2 … ∣ e − β H ^ ∣ s 1 s 2 … ⟩ = Tr ⁡ ( e − β H ^ ) Z=\sum_{s_{1} s_{2} \ldots}\left\langle s_{1} s_{2} \ldots\left|e^{-\beta \hat{H}}\right| s_{1} s_{2} \ldots\right\rangle=\operatorname{Tr}\left(e^{-\beta \hat{H}}\right) Z=s1s2s1s2eβH^s1s2=Tr(eβH^)如果证明需要运用泰勒展开加上基底完备性
证明如下:
在这里插入图片描述

多个热力学量可由配分函数关于温度的导数求得,例如自由能、能量、嫡等, 因此,求解配分函数是求解热力学问题的关键一步
算符平均值可由密度矩阵计算获得。

3.2基态问题

基态:能量最低的那个态


当系统温度极低时 ( β → ∞ ) , (\beta \rightarrow \infty), (β), 系统密度算符由哈密顿量最低的本征态 (记为 ∣ g ⟩ ) |g\rangle) g) 给出, 称为系统的基态 (ground state),对应的本征值 E g E_{g} Eg 称 为基态能
lim ⁡ β → ∞ e − β H ^ / Z = ∣ g ⟩ ⟨ g ∣ H ^ ∣ g ⟩ = E g ∣ g ⟩ \begin{array}{c} \lim _{\beta \rightarrow \infty} e^{-\beta \hat{H}} / Z=|g\rangle\langle g| \\ \widehat{H}|g\rangle=E_{g}|g\rangle \end{array} limβeβH^/Z=ggH g=Egg(注:考虑基态非简并情况; 证明可参考最大本征值的幕级数解法)
基态观测量满足: O ( β ) = Tr ⁡ ( O ^ e − β H ^ / Z ) = ⟨ g ∣ O ^ ∣ g ⟩ , O(\beta)=\operatorname{Tr}\left(\hat{O} e^{-\beta \hat{H}} / Z\right)=\langle g|\hat{O}| g\rangle, O(β)=Tr(O^eβH^/Z)=gO^g, 与量子态观测量公式一致。
基态求解求解哈密顿量对应矩阵的最低本征态及本征值,对应于如下最优化问题(回顾:最大本征问题对应的最优化问题):
E g = min ⁡ ⟨ g ∣ g ⟩ = 1 ⟨ g ∣ H ^ ∣ g ⟩ E_{g}=\min _{\langle g \mid g\rangle=1}\langle g|\widehat{H}| g\rangle Eg=gg=1mingH g

  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值