【没发表过的创新点】基于BitCN-BiGRU的风电功率预测研究(Matlab代码实现)

  💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

一、研究背景与意义

二、BiTCN-BiGRU模型概述

1. 双向时间卷积网络(BiTCN)

2. 双向门控循环单元(BiGRU)

三、基于BiTCN-BiGRU的风电功率预测模型构建

四、研究优势与挑战

优势:

挑战:

五、未来展望

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、数据


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

基于BiTCN-BiGRU(双向时间卷积网络结合双向门控循环单元)的风电功率预测研究是一种结合了深度学习技术在时间序列预测和空间特征提取方面优势的方法。这种方法旨在通过综合利用风电数据的时空特性,提高风电功率预测的准确性和稳定性。以下是对该研究的详细分析:

一、研究背景与意义

风能作为一种清洁、可再生的能源,其发电过程受多种自然因素影响,如风速、风向、温度等,导致风电功率具有显著的波动性和不确定性。准确的风电功率预测对于电力系统的调度、优化风电场的运行以及促进风电的并网消纳具有重要意义。BiTCN-BiGRU模型通过结合BiTCN在时间序列特征提取上的优势和BiGRU在时序建模上的特长,能够更全面地捕捉风电功率数据中的时空特征,从而提高预测精度。

二、BiTCN-BiGRU模型概述

1. 双向时间卷积网络(BiTCN)
  • 功能:BiTCN能够同时从前向和后向两个方向提取时间序列数据的特征,从而更全面地捕捉风电功率数据中的时序信息。时间卷积层通过卷积操作,自动学习并提取输入数据中的高维特征。
  • 优势:相比单向时间卷积网络,BiTCN能够同时考虑过去和未来的信息,提高模型对时序数据的建模能力。
2. 双向门控循环单元(BiGRU)
  • 功能:BiGRU是RNN(循环神经网络)的一种变体,通过引入门控机制和双向结构,能够捕捉时序数据中的长期依赖关系,并同时考虑过去和未来的信息。
  • 优势:BiGRU在门控机制的控制下,能够有效地处理梯度消失或梯度爆炸问题,提高模型训练的稳定性。同时,双向结构使得模型能够同时利用历史信息和未来信息,提高预测的准确性。

三、基于BiTCN-BiGRU的风电功率预测模型构建

基于BiTCN-BiGRU的风电功率预测模型构建主要包括以下几个步骤:

  1. 数据收集与预处理
    • 收集风电场的历史风速、风向、温度等气象数据以及相应的风电发电量数据。
    • 对数据进行清洗、去噪、插值等预处理操作,以消除异常值和缺失值对预测结果的影响。
    • 对数据进行归一化处理,以消除不同量纲对模型训练的影响。
  2. 特征提取
    • 使用BiTCN对预处理后的时间序列数据进行特征提取,获取与风电功率相关的时序特征。
  3. 时序建模
    • 将BiTCN提取的特征输入到BiGRU中,利用BiGRU捕捉这些特征之间的时序依赖关系。
    • BiGRU的输出将用于预测未来的风电功率。
  4. 模型训练与评估
    • 使用训练集数据对BiTCN-BiGRU模型进行训练,通过反向传播算法更新网络参数。
    • 使用测试集数据对训练好的模型进行评估,计算预测误差(如均方误差MSE、平均绝对误差MAE等),以评估模型的预测性能。

四、研究优势与挑战

优势:
  1. 高精度预测:BiTCN-BiGRU模型能够同时捕捉风电功率数据中的时空特征,从而实现高精度的预测。
  2. 适应性强:该模型能够处理非线性、高维的时序数据,适用于复杂的风电预测场景。
  3. 稳定性好:通过引入BiGRU的双向结构和门控机制,模型在处理时序数据时具有更好的稳定性。
挑战:
  1. 计算复杂度:BiTCN-BiGRU模型的计算复杂度较高,需要较长的训练时间和较高的计算资源。
  2. 数据依赖性:模型的预测性能高度依赖于输入数据的质量和数量。如果数据存在缺失或异常值,可能会对预测结果产生较大影响。
  3. 参数调优:模型的性能受参数影响较大,需要进行细致的参数调优工作以获得最佳预测效果。

五、未来展望

随着深度学习技术的不断发展,基于BiTCN-BiGRU的风电功率预测研究将不断深入和完善。未来可能的研究方向包括:

  1. 多源数据融合:将更多的数据源(如气象数据、地理数据、电网运行数据等)进行融合,以提高预测模型的准确性和鲁棒性。
  2. 模型优化:通过引入注意力机制、残差网络等先进算法对BiTCN-BiGRU模型进行优化,以进一步提高预测精度和训练效率。
  3. 实时预测系统:开发高效的实时预测系统和平台,实现风电功率的实时预测和动态调度,提高风电场的运营效率和经济效益。

📚2 运行结果

部分代码:

%%  创建网络
% 创建输入层
%  网络参数设置
filterSize = 3;  %  滤波器大小
dropoutFactor = 0.1;
numBlocks = 1; 
numFilters = 30;    %  滤波器个数
NumNeurons = 25;   %  BiGRU神经元个数
layer = sequenceInputLayer(f_, Normalization = "rescale-symmetric", Name = "input");
 
% 创建网络图
lgraph = layerGraph(layer);
outputName = layer.Name;
 
% 建立网络结构 -- 残差块
for i = 1 : numBlocks
    % 膨胀因子
    dilationFactor = 2^(i-1);
 
    % 创建TCN正向支路
    layers = [
        convolution1dLayer(filterSize, numFilters, DilationFactor = dilationFactor, Padding = "causal", Name="conv1_" + i)  % 一维卷积层 
        layerNormalizationLayer                                                                                             % 层归一化
        spatialDropoutLayer(dropoutFactor)                                                                                  % 空间丢弃层
        convolution1dLayer(filterSize, numFilters, DilationFactor = dilationFactor, Padding = "causal")                     % 一维卷积层  
        layerNormalizationLayer                                                                                             % 层归一化
        reluLayer                                                                                                           % 激活层
        spatialDropoutLayer(dropoutFactor)                                                                                  % 空间丢弃层
        additionLayer(4, Name = "add_" + i)
    ];
 
    % 添加残差块到网络
    lgraph = addLayers(lgraph, layers);
 
    % 连接卷积层到残差块
    lgraph = connectLayers(lgraph, outputName, "conv1_" + i);
 
    % 创建 TCN反向支路flip网络结构
    Fliplayers = [

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]曾亮,狄飞超,兰欣,等.基于CEEMD-CNN-BiGRU-RF模型的短期风电功率预测[J].可再生能源, 2022, 40(2):6.DOI:10.3969/j.issn.1671-5292.2022.02.008.

[2]秦小晖,樊重俊,付峻宇.融合Savitzky-Golay滤波器的TCN-SA-BiGRU风电功率预测[J].智能计算机与应用, 2023(011):013.

[3]晋孟雪.基于改进VMD和深度学习的风电功率预测研究[D].西安理工大学,2023.

🌈4 Matlab代码、数据

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

  • 7
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值