一、实验目的:
1.掌握2ASK的调制和解调原理以及Simulink的仿真方法;
2.掌握2FSK的调制和解调原理以及Simulink的仿真方法;
3.掌握2PSK的调制和解调原理以及Simulink的仿真方法。
二、实验原理
1、2ASK的调制与解调
2ASK调制原理:
2ASK是二进制形式的振幅键控,其数学表达式为:
其中,
为单极性非归零码,即:
2ASK信号的调制有两种方法:模拟幅度调制如图(a)所示,即利用乘法器实现调制,数字键控法如图(b)所示,即通过信号
对开关电路的控制实现调制。
图1 2ASK信号模拟调制原理框图 图2 2ASK信号键控调制原理框图
2ASK解调原理:
2ASK信号的解调方法有两种即包络检波和相干解调。
图3 2ASK信号解调原理框图
2、2FSK的调制与解调
2FSK调制原理:
2FSK传输数字信息时,是通过使用两个频率不同的载波来进行传输的,即码元信号0与载波频率的正弦信号相对应,码元信号1与载波频率的正弦信号相对应。其表达式为:若二进制基带信号的“1”对应载波频率,“0”对应于载波频率
,则2FSK的时域表达式为:
2FSK信号的调制可采用模拟调频法也可以采用键控法,其中键控如下图所示
图4 2FSK信号调制原理框图
2FSK解调原理:
2FSK信号的解调可采用相干解调或包络检波。
图5 2FSK信号解调原理框图
3、2PSK的调制与解调
2PSK调制原理:
2PSK的时域表达式为:
其中,
为双极性非归零码,即:
2PSK的调制如图所示,通过两种不同的调制方法分别产生了2PSK信号。
图6 2PSK信号调制原理框图
2PSK解调原理:
2PSK信号的解调采用相干解调的方法
图7 2PSK信号解调原理框图
三、实验内容和步骤:
1、2ASK调制与解调系统
图8 未加入噪声后的2ASK调制与解调系统仿真图
- 根据2ASK调制解调原理分析各模块的功能并设置各个模块的参数。
2ASK调制与解调原理分析:
2ASK调制是利用脉冲序列与单极性归零信号相乘得到的;解调可以利用包络检波也可利用相干解调,本次实验用的是相干解调,相干解调的原理是将2ASK信号经过带通滤波器,滤除带外噪声提取有用信息,在于载波同频同相的信号相乘,经过低通滤波器,后抽样判决恢复出原始信号。脉冲发生器产生的单极性非归零码,与频率为4Hz的载波信号相乘,得到2ASK信号,这是调制过程。经过信道传输后经过带通滤波器,这里带通滤波器的中心频率为载频4Hz,作用是滤除带外噪声提取有用信号,将有用信号提取出来,再与载波相乘,出来的信号通过低通滤波器并进行判决恢复出单极性非归零码,以上是相干解调的过程。
各模块的功能:
脉冲发生器:周期3秒,振幅1V,脉宽70;
载波:频率4Hz,幅度1V,初始相位0,采样时间0.01;
Band-Limited White Noise:噪声;
Error Rate Calculation:误码率计算器;
Display:显示器;
零阶保持器:采样时间-1;
带通滤波器:最低截止频率2Hz,最高截止频率6Hz,中心频率4Hz为载波频率;
低通滤波器:通带频率10Hz,阻带频率50Hz,输入采样频率8000Hz;
判决器:阈值0.3,打开时输出1,关闭时输出0,采样时间0.01。
(2)用示波器Scope观察调制仿真,对比调制前后信号的幅度和频率发生了哪些变化?
图9 未加入噪声后的2ASK的scope输出 图10 加入噪声后的2ASK的scope输出
Scope显示的时域波形可以观察出以下现象,第一个是发送端输入的单极性非归零码的脉冲波形,频率4Hz,初始相位为0。第二个是载波信号波形。第三个是将单极性非归零与载波相乘得到的2ASK调制信号波形。第四个是加入噪声后的波形。第五个调制信号与载波相乘,解调后的时域波形。第六个是经过低通滤波器滤除高频成分(滤去载波信号)。第六个是通过抽样判决,恢复原信号。
恢复出的信号与原信号相比而言,幅度和频率都没有发生变化,但有一定的延时。加了信道噪声时,解调出来的波形是收到噪声干扰的。
(3)请尝试自己加入高斯噪声模块,设计不同的方差参数,看看误码发生什么变化。
图11 加入噪声后的2ASK调制与解调系统仿真图
传输迟延的参数设置以及方差系数会影响误码率,信道噪声越大误码率越大。
2、2FSK调制与解调系统
图12 未加入噪声后的2FSK调制与解调系统仿真图
- 根据2FSK调制解调原理分析各模块的功能并设置各个模块的参数。
2FSK调制与解调原理分析:
2FSK调制是利用键控法实现的,解调方式采用的是相干解调。先利用伯努利二进制发生器产生单极性归零码,利用键控电路,阈值0.5判断上下支路,大于0.5连通上支路输出,小于0.5连通下支路输出,得到2FSK信号,得到的信号加入噪声,模拟在信道传输,后通过带通滤波器提取有用信号滤除带外噪声,在通过两个滤波器分成两路2ASK信号。2FSK解调:两路信号再与载波相乘,通过低通滤波器滤除高频分量,通过判决器恢复出原始信号。
各模块的功能:
Bernoulli Binary Generator:Probability of a zero:0.5;
第一个载波:频率100Hz,幅度1V,初始相位0,采样时间0.0001;
第二个载波:频率200Hz,幅度1V,初始相位
,采样时间0.0001;
Random Number:噪声,均值0,方差0.05;
Error Rate Calculation:误码率计算器;
Display:显示器;
零阶保持器:采样时间-1;
第一个带通滤波器:最低截止频率90Hz,最高截止频率220Hz,阶数6;
第二个带通滤波器:最低截止频率80Hz,最高截止频率120Hz,阶数3;
第三个带通滤波器:最低截止频率180Hz,最高截止频率220Hz,阶数3;
第一个低通滤波器:截止频率50Hz,阶数3;
第二个低通滤波器:截止频率50Hz,阶数3;
Relational Operator:将所选关系运算符应用于输入并输出结果。顶部(或左侧)输入对应于第一个操作数。
Cast To Boolean:将输入转换为输出的数据类型和定标。转换有两个可能的目标。一个目标是使输入和输出的真实值相等。另一个目标是使输入和输出的存储的整数值相等。溢出和量化误差会妨碍目标的完全实现。本次实验必须用到!因为Relational Operator输出的是boolean类型,而其他的是double类型。
(2)用示波器Scope观察调制仿真,对比调制前后信号的幅度和频率发生了哪些变化?
图13 未加入噪声后的2FSK的scope输出 图14 加入噪声后的2FSK的scope输出
Scope显示的时域波形可以观察出以下现象,第一个是发送端输入的单极性非归零码的波形。第二个是2FSK信号波形。第三个是将2FSK经过滤波器分解成的的2ASK调制信号波形。第四个是将2FSK经过滤波器分解成的的2ASK调制信号波形。第五个是恢复出的原信号。
恢复出的信号与原信号相比而言,幅度和频率都没有发生变化。
(3)请尝试自己加入高斯噪声模块,设计不同的方差参数,看看误码发生什么变化。
图15 加入噪声后的2FSK调制与解调系统仿真图
恢复出的信号与原信号相比而言,幅度和频率都没有发生变化。加入的方差越大,误码率就越大。
3、2PSK调制与解调系统
图16 未加入噪声2PSK调制与解调系统仿真图
- 根据2PSK调制解调原理分析各模块的功能并设置各个模块的参数。
2PSK调制与解调原理分析:
2PSK调制是利用键控法实现的,解调方式采用的是相干解调。2FSK调制:先利用伯努利二进制发生器产生单极性归零码,利用键控电路,阈值(0.5)判断上下支路,大于阈值连通上支路输出,小于阈值连通下支路输出,输出单极性非归零,把单极性非归零变为双极性非归零码,再与阈值比较,大于阈值时连接初始相位为0的信号波形,小于时接通输出初始相位为
的信号波形。得到2PSK信号。2PSK解调:得到的信号加入噪声,模拟在信道传输,后通过带通滤波器提取有用信号滤除带外噪声,再乘以与载波同频同相的信号,经低通滤波器,再经一个sign符号函数模块(对于实数输入,输出 1 表示正输入,-1 表示负输入,0 表示 0 输入。),恢复出双极性非归零码,双极性非归零码再通过一个键控,判决大于0的输出为1,小于0的输出为0,恢复出原始单极性非归零码。
各模块的功能:
Bernoulli Binary Generator:Probability of a zero:0.5;
第一个载波:频率1Hz,幅度1V,初始相位0,采样时间0.01;
第二个载波:频率1Hz,幅度1V,初始相位
,采样时间0.01;
Switch:当输入2满足所选条件时,输入1通过;否则,输入 3 通过。输入从上到下(或从左到右)进行编号。第一个和第三个输入端口是数据端口,第二个输入端口是控制端口。阈值设置为0.5(是单极性归零码变成双极性归零码)。
Band-Limited White Noise:噪声,功率0.1;
Error Rate Calculation:误码率计算器;
Display:显示器;
带通滤波器:巴特沃斯滤波器,最低截止频率0.1Hz,最高截止频率2Hz,阶数6;
低通滤波器:巴特沃斯滤波器,截止频率1Hz,阶数3;
Sign:对于实数输入,输出 1 表示正输入,-1 表示负输入,0 表示 0 输入。对于复数浮点输入,输出遵循 sign(u) = u ./ abs(u)。
(2)用示波器Scope观察调制仿真,对比调制前后信号的幅度和频率发生了哪些变化?
图17 未加入噪声后的2PSK的scope输出 图18 加入噪声后的2PSK的scope输出
Scope显示的时域波形可以观察出以下现象,第一个是发送端输入的单极性非归零码的脉冲波形,频率4Hz,初始相位为0。第二个是经过数字键控电路生成的双极性非归零信号波形。第三个是将双极性非归零与载波相乘得到的2PSK调制信号波形。第四个是与载波相乘后得到的波形。第五个是经过低通滤波器滤除高频成分(滤去载波信号)后生成的信号波形。第六个是通过抽样判决,恢复出的双极性非归零信号。第七个波形是还原出的单极性非归零信号。
恢复出的信号与原信号相比而言,幅度和频率都没有发生变化。
(3)请尝试自己加入高斯噪声模块,设计不同的方差参数,看看误码发生什么变化。
图19 加入噪声2PSK调制与解调系统仿真图
表1 2PSK噪声功率与误码率关系实验数据表
噪声功率 | 1.5 | 1 | 0.56 | 0.45 | 0.25 | 0.2 | 0.15 | 0.1 | 0.05 | 0.001 |
误码率 | 0.7073 | 0.6394 | 0.6324 | 0.6084 | 0.5914 | 0.5794 | 0.5654 | 0.5604 | 0.5524 | 0.5504 |
根据实验操作验证随着噪声功率不断增大,误码率不断增加。
四、实验总结:
对2ASK,2PSK和2FSK的产生方法模拟调制法和键控法有了更深的理解和认识。在此实验的基础上,我们可以进一步观察当基带信号在传输过程中存在噪声时,调制产生信号的波形,以及在接收端实现信号的解调,对仿真结果进行了分析。完成本次实验的意义非常多,数字信号传输系统在现代通信中的应用范围非常广泛,对于提高通信质量和效率至关重要。通过不断地优化和改进,我们可以实现更高效、更稳定的数字信号传输,为数字通信领域的发展做出贡献。
在数字信号传输系统的设计和优化中,一些重要的因素需要考虑,例如信道噪声、信号失真、信号衰减等。这些因素可能会导致数字信号传输的误码率增加,从而降低通信质量。为了提高数字信号传输质量,我们可以采用多种技术,例如信号编码、信号调制、信道均衡等。通过这些技术的应用,我们可以有效地减少误码率,提高数字信号传输的可靠性和稳定性。在完成此次实验的过程中,我深刻认识到了数字信号传输系统的重要性和应用。通过使用matlab/simulink工具,我学习了如何建立数字带通传输系统的模型,并进行了仿真分析。
总体来说,本次实验是一个非常有意义的学习和实践过程,它可以帮助我们更好地理解数字信号传输系统的原理和应用,对未来的学习提供了很好的基础。