目录
2. Categorical distribution plots(分类分布图)
3. Categorical estimate plots(分类估计图)
基本统计特征函数
统计特征函数用于计算数据的均值、方差、标准差、分位数、相关系数和协方差等,这 些统计特征能反映出数据的整体分布。
corr():
- 1.在数据分析中,相关系数矩阵是用来反映数据不同特征之间的相关性的。
- 2.相关系数矩阵中的每一个元素都是系数:
- 2.1.两个不同特征之间的相关系数,所以元素的取值范围为[-1,1]。
- 2.2.相关系数的绝对值越接近1,表示两个特征的相关性越高;若取值为负数,表示两个特征之间是负相关关系,若取值为正值,表示两个特征之间是正相关关系。
- 2.3.相关系数矩阵的对角线元素反映的是特征自身的相关性,所以都为1。
- 3.相关系数矩阵可以用来检验变量之间的多重共线性。在数据分析中,多重共线性是指两个或多个特征之间的相关性很高,从而导致在对结果进行预测时,特征之间的重复信息很多,
describe():
- 功能:直接给出样本数据的一些基本的统计量,包括均值、标准差、最大值、最小 值、分位数等。
- 使用格式:D.describe() 括号里可以带一些参数,比如percentiles = [0.2, 0.4, 0.6, 0.8]就是指定只计算0.2、 0.4、0.6、0.8分位数,而不是默认的1/4、1/2、3/4分位数。
import numpy as np
D = pd. DataFrame (np. random.randn (6, 5) ) # 产生 6x5 随机矩阵
D.describe()
print(type(D.describe()))
D.describe().iloc[:,0:3]
图形分析:
初识seaborn
seaborn是python中的一个可视化库,是对matplotlib进行二次封装而成,既然是基于matplotlib,所以seaborn的很多图表接口和参数设置与其很是接近。相比matplotlib而言,个人认为seaborn的几个鲜明特点如下:
* 绘图接口更为集成,可通过少量参数设置实现大量封装绘图
*
* 多数图表具有统计学含义,例如分布、关系、统计、回归等
*
* 对Pandas和Numpy数据类型支持非常友好
*
* 风格设置更为多样,例如风格、绘图环境和颜色配置等
正是由于seaborn的这些特点,在进行EDA(Exploratory Data Analysis, 探索性数据分析)过程中,seaborn往往更为高效。然而也需指出,seaborn与matplotlib的关系是互为补充而非替代:多数场合中seaborn是绘图首选,而在某些特定场景下则仍需用matplotlib进行更为细致的个性化定制。
seaborn与Matplotlib进行比较
Matplotlib的不足
- 图表不够美观
- 数据分析的时候需要的条件太多
- 和pandas的结合一般
Seaborn的优势
- 可以绘制高颜值的图表
- 专门为数据分析设计的可视化库
- 对于pandas的兼容兼容性非常好
Seaborn的内置数据集
sns.load_dataset()函数
可以加载内部的数据集,返回一个DataFrame对象:
sns.load_dataset(name,cache=True,data_home,**kwages)
- name是数据集的名称
- cache是否缓存
- data_home只能是存储数据集的目录(默认在当前的home目录下,seaborn-data)
import seaborn as sns
import numpy as np
import matplotlib.pyplot as plt
tips = sns.load_dataset(name="tips",cache=True,data_home="./seaborn-data")
tips.head()
Seaborn的主题和颜色
1. 主题(style)
seaborn设置风格的方法主要有三种:
set,通用设置接口
- setstyle,风格专用设置接口,设置后全局风格随之改变
- axesstyle,设置当前图(axes级)的风格,同时返回设置后的风格系列参数,支持with关键字用法 英[ˈæksɪz]
1. setstyle,风格专用设置接口,设置后全局风格随之改变
setstyle第一个参数:
- sns.set_style("whitegrid") # 白色网格背景
- sns.set_style("darkgrid") # 灰色网格背景
- sns.set_style("dark") # 灰色背景
- sns.set_style("white") # 白色背景
- sns.set_style("ticks") # 四周加边框和刻度
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
import warnings
#忽略警告
warnings.filterwarnings('ignore')
#设置背景风格
sns.set_style('darkgrid')#暗网格背景
# sns.set_style('whitegrid')#白网格背景
# sns.set_style('dark')#暗色调背景
# sns.set_style('white')#白色背景
# sns.set_style('ticks')#带有刻度的背景
#图片的尺寸只能通过plt设置
plt.rcParams['figure.figsize'] = (8,4) #单位为英寸
#清晰度 dpi参数指定绘图对象的分辨率,即每英寸多少个像素
plt.figure(dpi=100)
X = np.arange(20)
y = np.log(X**2)
sns.scatterplot(X,y)#散布图
#控制画布边框 刻度的显示方位【重要】
#sns.despine()函数的top、right、left、bottom参数的值来控制,值为True时,会移除该轴,反之,保留该轴。
#sns.despine(top=True, right=True, left=False, bottom=False)
sns.despine(top=False, right=False, left=True, bottom=True)
#保存图片
#plt.savefig('./imgs/sns_scatter.png',dpi=100)
2. axes_style,设置当前图(axes级)的风格
#subplot(nrows, ncols, plot_number)
#nrows:子图的行数
#ncols:子图的列数
#plot_number 索引值,表示把图画在第plot_number个位置#
#可以不用逗号分开直接写在一起。
import seaborn as sn
import matplotlib.pyplot as plt
# 用不同风格的背景来画线图
np.random.seed(666)
x = np.random.randn(1000)
######################
plt.subplot(231)
plt.hist(x)
plt.title('style=matplotlib')
######################
#with with还可以很好的处理上下文环境产生的异常 https://blog.csdn.net/li_101357/article/details/69660451
with sns.axes_style('darkgrid'):
plt.subplot(232)
sns.distplot(x)
plt.title('style=darkgrid')
with sns.axes_style('whitegrid'):
plt.subplot(233)
sns.distplot(x)
plt.title('style=whitegrid')
with sns.axes_style('ticks'):
plt.subplot(234)
sns.distplot(x)
plt.title('style=ticks')
with sns.axes_style('dark'):
plt.subplot(235)
sns.distplot(x)
plt.title('style=dark')
with sns.axes_style('white'):
plt.subplot(236)
sns.distplot(x)
plt.title('style=white')
plt.tight_layout()#tight_layout会自动调整子图参数,使之填充整个图像区域
plt.show()
2. set_style()的第二个参数
在matplotlib中,我们通过rcParams['font.family']=['SimHei']来解决中文不显示问题 在Seaborn中是没有效果,只能通过set_style()的第二个参数解决。
#中文设置 jupyter可用,AIStdio无用
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
import pandas as pd
import warnings
%matplotlib inline
#忽略警告
warnings.filterwarnings('ignore')
#设置背景风格
#第二个参数是一个字典类型
##########################################################
#sns.set_style('darkgrid',{'font.sans-serif':['SimHei','Arial']}) #jupyter可用,AIStdio无用
############################################
#负号问题,显示不了负号的话这样解决
plt.rcParams['axes.unicode_minus'] = False
#图片的尺寸只能通过plt设置
plt.rcParams['figure.figsize'] = (8,4)
#清晰度
plt.figure(dpi=100)
X = np.arange(-5,5,0.1)
#在sns中还是pandas.DataFrame类型别叫好画图
data = dict(A=np.exp(-X**2),B=np.sin(X),C=X)
#强制转换成DataFrame
df = pd.DataFrame(data)
print(df)
#绘制线性图
sns.lineplot(data=df)#线形图
plt.title('这里有三条线')
#保存
#plt.savefig('img/sns_lineplot.png',dpi=100)
3. 环境(context)
设置环境的方法也有3种:
- set,通用设置接口
- set_context,环境设置专用接口,设置后全局绘图环境随之改变
- plotting_context,设置当前图(axes级)的绘图环境,同时返回设置后的环境系列参数,支持with关键字用法
# sns.plotting_context("notebook") # 默认
# sns.plotting_context("paper")
# sns.plotting_context("talk")
# sns.plotting_context("poster")
4. 颜色(color_plette())
palette 英 [ˈpælət]
seaborn风格多变的另一大特色就是支持个性化的颜色配置。
- sns.color_palette()调色板,返回的数值是一个二维的,内维中是一组RGB
- palette :选则什么样的颜色组合
- n_colors :显示色块的数量
#sns.color_palette()
#sns.color_palette('coolwarm')
sns.color_palette('coolwarm',4)
#sns.color_palette(palette='hlsfasfaf')##查看所有的颜色呢:故意输入一个错的,里面就是各种颜色的名字了
#调用sns.palplot()将色块(palette的每种颜色)打印出来。
sns.palplot(sns.color_palette())
sns.palplot(sns.color_palette('coolwarm'))
sns.palplot(sns.color_palette('Greens',n_colors =4))
n=4
sns.palplot(sns.color_palette("hls",n))#——显示出n个不同颜色的色块
sns.palplot(sns.color_palette("Paired",2*n))#——显示出2n个不同颜色的色块,且这些颜色两两之间是相近的
sns.palplot(sns.color_palette("Greens"))#——由浅入深显示出同一颜色的色块
sns.palplot(sns.color_palette("Greens_r"))#——由深入浅显示出同一颜色的色块
sns.palplot(sns.color_palette("cubehelix",n))#——显示出n个颜色呈线性变化的色
#常用配色举例
import seaborn as sns
import matplotlib.pyplot as plt
sns.palplot(sns.color_palette(palette='hls',n_colors=30))
sns.palplot(sns.color_palette(palette='rainbow',n_colors=30))
sns.palplot(sns.color_palette(palette='GnBu_r',n_colors=30))
sns.palplot(sns.color_palette(palette='spring',n_colors=30))
sns.palplot(sns.color_palette(palette='mako',n_colors=8))
Relational plots(关系图 关联图)
数据分析中就是理解变量如何相互关联,当这些关系被正确可视化时,我们往往可以从中获取某种关系或模式。
Relational plots 主要讨论三个函数:
- scatterplot(散点图)
- lineplot(线图)
- relplot(关系图)
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
1. scatterplot(散点图)
散点图是利用散点来描述两个变量的联合分布,scatterplot 适用于变量都是数字的情况。在后面的Categorical plots(分类图)中,我们将会看到使用散点图可视化分类数据的专门工具。
#scatterplot参数 seaborn.scatterplot(x=None, y=None, hue=None, style=None, size=None, data=None, palette=None, hue_order=None, hue_norm=None, sizes=None, size_order=None, size_norm=None, markers=True, style_order=None, x_bins=None, y_bins=None, units=None, estimator=None, ci=95, n_boot=1000, alpha='auto', x_jitter=None, y_jitter=None, legend='brief', ax=None, **kwargs)
Seaborn函数中的参数特别多,但是其实大部分都是相同的,因此,我们可以很容易类推到其他函数的使用。下面简单介绍这些参数的含义。
hue, col分类依据,size将产生不同大小的元素的变量分组,aspect长宽比,legend_full每组均有条目
- x,y: 传入的特征名字或Python/Numpy数据,x表示横轴,y表示纵轴,一般为dataframe中的列。如果传入的是特征名字,那么需要传入data,如果传入的是Python/Numpy数据,那么data不需要传入。因为Seaborn一般是用来可视化Pandas数据的,如果我们想传入数据,那使用Matplotlib也可以。
- hue: 分组变量,将产生不同颜色的点。可以是分类的,也可以是数字的。被视为类别。
- data: 传入的数据集,可选。一般是dataframe
- style: 分组变量,将产生不同标记点的变量分组。被视为类别。
- size: 分组变量,将产生不同大小的点。可以是分类的,也可以是数字的。
- palette: 调色板,后面单独介绍。
- markers: 绘图的形状,后面单独介绍。
- ci: 允许的误差范围(空值误差的百分比,0-100之间),可为‘sd’,则采用标准差(默认95)
- n_boot(int): 计算置信区间要使用的迭代次数
- alpha: 透明度
- x_jitter, y_jitter: 设置点的抖动程度。
plt.figure(dpi=100)
plt.rcParams['figure.figsize'] = (10,6) #单位为英寸
plt.subplot(221)
sns.scatterplot(x='total_bill',y='tip',data=tips)
plt.title('No p')
plt.subplot(222)
sns.scatterplot(x='total_bill',y='tip',data=tips,hue='day',palette='Greens')
plt.title('hue')
plt.subplot(223)
sns.scatterplot(x='total_bill',y='tip',data=tips,style='time')
plt.title('style')
plt.subplot(224)
sns.scatterplot(x='total_bill',y='tip',data=tips,size='size')
plt.title('size')
plt.tight_layout()#tight_layout会自动调整子图参数,使之填充整个图像区域
plt.show()
sns.scatterplot(x='total_bill',y='tip',hue='day',style='time',size='size',data=tips)
plt.show()
2. lineplot(线图)¶
#查看数据趋势 sns.lineplot(x=None,y=None,hue=None,data=None,style=None,size=None)
fmri = sns.load_dataset('fmri')
print(fmri.head(5))
sns.lineplot(x="timepoint", y="signal", data=fmri)
# 阴影是默认的置信区间,可设置ci=0,将其去除
sns.lineplot(x="timepoint", y="signal",hue="event", style="event",markers=True, dashes=False, data=fmri)
# markers=True表示使用不同的标记
# dashes=True表示一条实线,一条虚线
3. relplot(关系图)
seaborn.relplot(x=None, y=None, hue=None, size=None, style=None, data=None, row=None, col=None, col_wrap=None, row_order=None, col_order=None, palette=None, hue_order=None, hue_norm=None, sizes=None, size_order=None, size_norm=None, markers=None, dashes=None, style_order=None, legend='brief', kind='scatter', height=5, aspect=1, facet_kws=None, **kwargs)
相当于lineplot和scatterplot的归约,可以通过kind参数指定画什么图形,参数解释如下:
- kind: 默认是’scatter’,也可以选择kind=‘line’
- sizes: List、dict或tuple,可选,说白了就是图片大小,注意和size区分;
- col、row: col指定列的分组变量,row指定行的分组变量,具体看下面例子
tips = sns.load_dataset("tips")
sns.relplot(x="total_bill", y="tip", data=tips)
#两者效果一模一样
#sns.scatterplot(x="total_bill", y="tip", data=tips)
sns.relplot(x="total_bill", y="tip", hue="time", size="size",
palette=["b", "r"], sizes=(10, 100),col="time",row='sex', data=tips)
分类图
Categorical plots(分类图) 具体可以分为下main三种类型,11种图形:
Categorical scatterplots(分类散点图)
- stripplot(分布散点图)
- swarmplot(分布密度散点图)
Categorical distribution plots(分类分布图)
- boxplot(箱型图)
- violinplot(小提琴图)
- violinplot+stripplot(小提琴图+分布散点图)
- violinplot+swarmplot(小提琴图+分布密度散点图)
- boxplot+stripplot(箱线图+分布散点图)
Categorical estimate plots(分类估计图)
- barplot(条形图)
- countplot(计数图)
- piontplot(点图)
- catplot()
1. 分类散点图 (分类(X) 散点(Y))
- stripplot(分布散点图)Strip(带状图)
- swarmplot(分布密度散点图)(蜂群图)
stripplot(分布散点图)
stripplot就是其中一个变量是分类变量的scatterplot(散点图)。 #stripplot(分布散点图)一般并不单独绘制,它常常与boxplot和violinplot联合起来绘制,作为这两种图的补充。
seaborn.stripplot(x=None, y=None, hue=None, data=None, order=None, hue_order=None, jitter=True, dodge=False, orient=None, color=None, palette=None, size=5, edgecolor='gray', linewidth=0, ax=None, **kwargs)
- order:用order参数进行筛选分类类别,例如:order=[‘sun’,‘sat’];
- jitter:抖动项,表示抖动程度,可以是False,或者True。如果不抖动的话,那么散点就会呈现一条直线了,并不利于可视化
- dodge:重叠区域是否分开,当使用hue时,将其设置为True,将沿着分类轴将不同色调级别的条带分开。
- orient:“v” | “h”,vertical(垂直) 和 horizontal(水平)的意思;
#1.带状:描述的还是密度,点密集就是那块给的多
import seaborn as sns
import matplotlib.pyplot as plt
plt.rcParams['figure.figsize'] = (8,7)
#读取数据集
#tips = sns.load_dataset('tips')
#sns.stripplot(data=tips,x='day',y='tip',palette='rainbow')
sns.stripplot(x="day", y="total_bill", hue="smoker",data=tips,
jitter=True,palette="Set2",dodge=False)
#plt.savefig('./imgs/sns_stripplot.png',dpi=100)
swarmplot(分布密度散点图)
类似于stripplot(),但是对点进行了调整(只沿着分类轴),使每个点都不会重叠。这更好地表示了值的密度分布,但显然,不适用大量观测的可视化。
#2.蜂群:横着几个就是几个人
import seaborn as sns
import matplotlib.pyplot as plt
plt.rcParams['figure.figsize'] = (8,7)
#读取数据集
tips = sns.load_dataset('tips')
#sns.swarmplot(data=tips,x='day',y='tip',palette='rainbow')
sns.swarmplot(x="day", y="total_bill", data=tips)
plt.savefig('./imgs/sns_swarmplot.png',dpi=100)
2. Categorical distribution plots(分类分布图)
- boxplot(箱型图)
- violinplot(小提琴图)
- violinplot+stripplot(小提琴图+分布散点图)
- violinplot+swarmplot(小提琴图+分布密度散点图)
- boxplot+stripplot(箱线图+分布散点图)
1. 箱图
箱图是什么 箱图又叫做盒须图,是显示数据单变量(单列)分布情况的统计图。 检测异常值 上限和下限的计算,先求上四分位数和下四分位数
注意: 箱线图与小提琴图一样,适合展示数据的整体分布,与数据的集中程度,箱线图还包括数据的上线四分位线,异常值等等,也可以用来比较两组数据整体的高低等。 在数据集中数据较多的情况下,还可以选择sns.boxenplot用来展示数据分布,可以较为直观的整体数据分布。
import seaborn as sns
sns.boxplot(x="day", y="total_bill", data=tips)
sns.boxplot(x="day", y="total_bill", hue="time",data=tips,
linewidth=0.5,saturation=0.5,width=0.5,fliersize=3)
# saturation:饱和度,可设置为1;
# width:float,控制箱型图的宽度大小;
# fliersize:float,用于指示离群值观察的标记大小;
# whis:可理解为异常值的上限IQR比例;
#在数据集中数据较多的情况下,还可以选择sns.boxenplot用来展示数据分布,可以较为直观的整体数据分布。
sns.boxenplot(x="day", y="total_bill", hue="time",data=tips)
# boxenplot是为更大的数据集绘制增强的箱型图。这种风格的绘图最初被命名为“信值图”,
# 因为它显示了大量被定义为“置信区间”的分位数。它类似于绘制分布的非参数表示的箱形图,其中所有特征对应于实际观察的数值点。
# 通过绘制更多分位数,它提供了有关分布形状的更多信息,特别是尾部数据的分布。
注意:核密度图能说明数据出现的次数,是一组数据在坐标轴上“疏密程度”的可视化,密度图使用拟合后的(平滑)的曲线显示,“峰”越高表示此处数据越“密集”,“密度”越高。
2. violinplot(小提琴图)
violinplot(小提琴图) 就是绘制箱线图和核密度估计的组合,表达图形含义与箱线图类似,可以较为直观的展示数据的分布。
通过箱线图,我们可以得到数据对于分类变量的分位数,通过核密度估计,我们可以知道哪些位置的密度大
seaborn.violinplot(x=None, y=None, hue=None, data=None, order=None, hue_order=None, bw='scott', cut=2, scale='area', scale_hue=True, gridsize=100, width=0.8, inner='box', split=False, dodge=True, orient=None, linewidth=None,
-
color=None, palette=None, saturation=0.75, ax=None, **kwargs)
-
bw:‘scott’, ‘silverman’, float,控制拟合程度。在计算内核带宽时,可以引用规则的名称(‘scott’, ‘silverman’)或者使用比例(float)。实际内核大小将通过将比例乘以每个bin内数据的标准差来确定;
-
cut:空值外壳的延伸超过极值点的密度,float;
-
scale:“area”, “count”, “width”,用来缩放每把小提琴的宽度的方法;
-
scale_hue:当使用hue分类后,设置为True时,此参数确定是否在主分组变量进行缩放;
-
gridsize:设置小提琴图的平滑度,越高越平滑;
-
inner:“box”, “quartile”, “point”, “stick”, None,小提琴内部数据点的表示。分别表示:箱子,四分位,点,数据线和不表示;
-
split:是否拆分,当设置为True时,绘制经hue分类的每个级别画出一半的小提琴;
plt.rcParams['figure.figsize'] = (6,6)
sns.violinplot(x="day", y="total_bill", data=tips)
# 设置按性别分类,调色为“Set2”,分割,以计数的方式,不表示内部。
sns.violinplot(x="day", y="total_bill", hue="sex",data=tips,
palette="Set2", split=True,scale="count", inner=None)
3. 混合显示
violinplot+stripplot(小提琴图+分布散点图)
sns.violinplot(x="day", y="tip", data=tips, inner=None,whis=np.inf)
sns.stripplot(x="day", y="tip", data=tips,jitter=True, color="c")
violinplot+swarmplot(小提琴图+分布密度散点图)
sns.violinplot(x="tip", y="day", data=tips, inner=None,whis=np.inf)
sns.swarmplot(x="tip", y="day", data=tips, color="c")
boxplot+stripplot(箱线图+分布散点图)
sns.boxplot(x="tip", y="day", data=tips, whis=np.inf)
sns.stripplot(x="tip", y="day", data=tips,jitter=True, color="c")
boxplot+swarmplot(箱线图+分布密度散点图)
sns.boxplot(x="tip", y="day", data=tips, whis=np.inf)
sns.swarmplot(x="tip", y="day", data=tips, color="c")
3. Categorical estimate plots(分类估计图)
1. 柱状图barplot
barplot(条形图) 用矩形条表示估计点和置信区间,使用误差线提供关于该估计值附近的不确定性的一些指示。
柱状图的函数
seaborn.barplot(x=None, y=None, hue=None, data=None, order=None, hue_order=None, estimator=, ci=95, n_boot=1000, units=None, orient=None, color=None, palette=None, saturation=0.75, errcolor='.26', errwidth=None, capsize=None, dodge=True, ax=None, **kwargs)
柱状图的参数
-
hue参数,不同数据依据什么分类 分组
-
data参数,制定绘制图的数据
-
palette参数,使用什么颜色
-
x、y、hue取值必须是DataFrame中的列名 补充:
-
data 表示 轴上 的数据 x 会自动分组
-
#hue可以再次分组 并加图例
-
#estimator 统计量 np.sum np.mean
-
#color 只支持单颜色
-
#palete 渐变色
-
estimator:用于估计每个分类箱内的统计函数,默认为mean。当然你也可以设置estimator=np.median/np.std/np.var……
-
order:设置特征值的顺序,例如:order=[‘Sat’,‘Sun’];
-
ci:允许的误差的范围(控制误差棒的百分比,在0-100之间),若填写"sd",则用标准误差(默认为95),也可设置ci=None;
-
capsize:设置误差棒帽条(上下两根横线)的宽度,float;
-
errcolor:表示置信区间的线条的颜色;
-
errwidth:float,设置误差条线(和帽)的厚度。
import seaborn as sns
#读取数据集
tips = sns.load_dataset('tips')
#绘制图表
#sns中的柱状图表示的均值
sns.barplot(data=tips,x='day',y="total_bill",hue='sex',palette='cubehelix_r')
#palette='cubehelix_r'是颜色
# hue参数,不同数据依据sex分类
# data参数,制定绘制图的数据是tips
# palette参数,使用什么颜色,hls是一种颜色,前面可以查到
# x、y、hue取值必须是DataFrame中的列名【重要】
plt.title('柱状图')
#保存
plt.savefig('./imgs/sns_tips_bar.png',dpi=100)
# 每一个柱子代表分类特征的平均数,黑色线表示该组特征的标准差,即其离散程度
2. countplot(计数图)
countplot(计数图) 用条形图显示每个分类的观察次数,实际就是一个分类直方图。因为是用来计数的,count是一个轴,然后特征是一个轴,因此不能同时输入x和y。
seaborn.countplot(x=None, y=None, hue=None, data=None, order=None, hue_order=None, orient=None, color=None, palette=None, saturation=0.75, dodge=True, ax=None, **kwargs)
titanic = sns.load_dataset("titanic")
sns.countplot(x="class",hue="who", data=titanic) #class传票等级
3. piontplot(点图)
piontplot(点图) 使用散点图图形显示点估计和置信区间,并使用误差线提供关于该估计的不确定性的一些指示。
点图代表散点图位置的数值变量的中心趋势估计,并使用误差线提供关于该估计的不确定性的一些指示。点图可能比条形图更有用于聚焦一个或多个分类变量的不同级别之间的比较。他们尤其善于表现交互作用:一个分类变量的层次之间的关系如何在第二个分类变量的层次之间变化。连接来自相同色调等级的每个点的线允许交互作用通过斜率的差异进行判断,这比对几组点或条的高度比较容易
seaborn.pointplot(x=None, y=None, hue=None, data=None, order=None, hue_order=None, estimator=, ci=95, n_boot=1000, units=None, markers='o', linestyles='-', dodge=False, join=True, scale=1, orient=None, color=None, palette=None, errwidth=None, capsize=None, ax=None, **kwargs)
- join:默认两个统计点会相连接,若不想显示,可以通过join=False参数实现;
- scale:float,均值点(默认)和连线的大小和粗细。
tips = sns.load_dataset("tips")
sns.pointplot(x="time", y="total_bill", data=tips)
4. catplot()
catplot() 说白了就是对前面几个分类估计图的归约,通过kind参数来选择具体的图形
seaborn.catplot(x=None, y=None, hue=None, data=None, row=None, col=None, col_wrap=None, estimator=, ci=95, n_boot=1000, units=None, order=None, hue_order=None, row_order=None, col_order=None, kind='strip', height=5, aspect=1, orient=None, color=None, palette=None, legend=True, legend_out=True, sharex=True, sharey=True, margin_titles=False, facet_kws=None, **kwargs)
- kind:默认strip(分布散点图),也可以选择“point”, “bar”, “count”,
- col、row:将决定网格的面数的分类变量,可具体制定;
- col_wrap:指定每行展示的子图个数,但是与row不兼容;
- row_order, col_order : 字符串列表,安排行和列,以及推断数据中的对象;
- height,aspect:与图像的大小有关;
- sharex,sharey:bool, ‘col’or ‘row’,是否共享x,y坐标;
## 绘制一个小提琴图,按数据中的kind类别分组(数据中的),不要中心框线。
exercise = sns.load_dataset("exercise")
sns.catplot(x="time", y="pulse", hue="kind",data=exercise, kind="violin",inner=None)
4. 分面网格分类图
分面网格(faceGrid)可以绘制多个子图,这个网格是一个大图,有x和y两个坐标轴,实际上就是一个大图里面嵌套多个子图。
在分面网格中绘制分类图使用Catplot函数是图级函数,下面的barplot boxplot violinplot是轴级函数 catplot函数除了轴级函数参数意外,还有参数
- row:在x轴上绘制的数据
- col:在y轴绘制的数据
- col_wrap 在x轴绘制子图的最大个数
- kind 绘制子图类型 主要有bar strip swarm box violin或boxen 其中srip默认
sns.catplot(data=tips,x='size',y='tip',hue="sex",col='day',row="time")
Distribution plots(分布图)
1. distplot(直方图)
distplot(直方图) 绘制单变量或双变量直方图,以显示数据集的分布。该函数可以对每个bin内计算的统计量进行归一化估计频率、密度或概率质量,它可以添加一个平滑的曲线得到使用内核密度估计。
distplot( data=None, *, x=None, y=None, hue=None, weights=None, stat="count", bins="auto", binwidth=None, binrange=None, discrete=None, cumulative=False, common_bins=True, common_norm=True, multiple="layer", element="bars", fill=True, shrink=1, kde=False, kde_kws=None, line_kws=None, thresh=0, pthresh=None, pmax=None, cbar=False, cbar_ax=None, cbar_kws=None, palette=None, hue_order=None, hue_norm=None, color=None, log_scale=None, legend=True, ax=None, **kwargs,)
- bins:int或list,控制直方图的划分,设置矩形图(就是块儿的多少)数量,除特殊要求一般默认;
- kde:是否显示核密度估计曲线;
- common_norm:若为True,则直方图高度显示频率而非计数
# 随机生成1000个符合正态分布的数
np.random.seed(666)
x = np.random.randn(1000)
# 修改更多参数,设置方块的数量,颜色为‘k’
sns.distplot(x,kde=True,bins=100,color='k')
2. kdeplot(核密度图)
kdeplot(核密度图) 使用核密度估计绘制单变量或双变量分布。
核密度估计(kernel density estimation)是在概率论中用来估计未知的密度函数,属于非参数检验方法之一。通过核密度估计图可以比较直观的看出数据样本本身的分布特征。
seaborn.kdeplot(data, data2=None, shade=False, vertical=False, kernel='gau', bw='scott', gridsize=100, cut=3, clip=None, legend=True, cumulative=False, shade_lowest=True, cbar=False, cbar_ax=None, cbar_kws=None, ax=None, **kwargs)
参数:
- data、data2:表示可以输入双变量,绘制双变量核密度图;
- shade:是否填充阴影,默认不填充;
- vertical:放置的方向,如果为真,则观测值位于y轴上(默认False,x轴上);
- kernel:{‘gau’ | ‘cos’ | ‘biw’ | ‘epa’ | ‘tri’ | ‘triw’ }。默认高斯核(‘gau’)二元KDE只能使用高斯核。
- bw:{‘scott’ | ‘silverman’ | scalar | pair of scalars }。四类核密度带方法,默认scott (斯考特带宽法)
- gridsize:这个参数指的是每个格网里面,应该包含多少个点,越大,表示格网里面的点越多,越小表示格网里面的点越少;
- cut:参数表示,绘制的时候,切除带宽往数轴极限数值的多少,这个参数可以配合bw参数使用;
- cumulative:是否绘制累积分布;
- shade_lowest:是否有最低值渲染,这个参数只有在二维密度图上才有效;
- clip:表示查看部分结果,是一个区间;
- cbar:参数若为True,则会添加一个颜色棒(颜色棒在二元kde图像中才有);
mean, cov = [0, 2], [(1, .5), (.5, 1)]
#这是一个多元正态分布,x和y都是长度为50的向量
x, y = np.random.multivariate_normal(mean, cov, size=50).T
print(x)
print(y)
sns.kdeplot(x,shade=True)
plt.show()
# 接下来绘制双变量核密度图①:
sns.kdeplot(x,y,shade=True,shade_lowest=False,cbar=True,color='r')
# 接下来绘制双变量核密度图②:二色二元密度图,使用大名鼎鼎的鸢尾花数据集
iris = sns.load_dataset("iris")
setosa = iris[iris.species == "setosa"]
virginica = iris[iris.species == "virginica"]
sns.kdeplot(setosa.sepal_width, setosa.sepal_length,cmap="Reds",
shade=True, shade_lowest=False)
sns.kdeplot(virginica.sepal_width, virginica.sepal_length,cmap="Blues",
shade=True, shade_lowest=False)
plt.show()
3. jointplot(联合分布图)
jointplot(联合分布图) 说白了就是直方图和核密度图的组合。
seaborn.jointplot(x, y, data=None, kind='scatter', stat_func=None, color=None, height=6, ratio=5, space=0.2, dropna=True, xlim=None, ylim=None, joint_kws=None, marginal_kws=None, annot_kws=None, **kwargs)
- x,y:为DataFrame中的列名或者是两组数据,data指向dataframe;
- kind : { “scatter” | “reg” | “resid” | “kde” | “hex” }。默认散点图;
- stat_func:用于计算统计量关系的函数;
- ratio:中心图与侧边图的比例,越大、中心图占比越大;
- dropna:去除缺失值;
- height:图的尺度大小(正方形);
- space:中心图与侧边图的间隔大小;
- xlim,ylim:x,y的范围
# 用边缘直方图绘制散点图
tips = sns.load_dataset("tips")
sns.jointplot(x="total_bill", y="tip", data=tips,height=5)
plt.show()
# 用密度估计替换散点图和直方图,调节间隔和比例:
iris = sns.load_dataset("iris")
sns.jointplot("sepal_width", "petal_length", data=iris,kind="kde", space=0,ratio=6 ,color="r")
plt.show()
4. pairplot(变量关系组图)
pairplot(变量关系组图) 描述数据集中的成对关系。默认情况下,该函数将创建一个轴网格,对角线图 描述该变量的直方图分布,非对角线图描述两个变量之间的联合分布。
seaborn.pairplot(data, hue=None, hue_order=None, palette=None, vars=None, x_vars=None, y_vars=None, kind='scatter', diag_kind='auto', markers=None, height=2.5, aspect=1, dropna=True, plot_kws=None, diag_kws=None, grid_kws=None, size=None)
- vars:data中的子集,否则使用data中的每一列
- x_vars / y_vars:可以具体细分,谁与谁比较;
- kind:{‘scatter’, ‘reg’};
- diag_kind:{‘auto’, ‘hist’, ‘kde’}。对角线的图样。默认情况取决于是否使用“hue”。
# 使用hue="species"对不同种类区分颜色绘制,并使用不同标记:
sns.pairplot(iris, hue="species", markers=["o", "s", "D"])
Regression plots(回归图)
1. regplot(回归图)
regplot(回归图) 在绘制图时自动进行线性回归模型拟合
seaborn.regplot(x, y, data=None, x_estimator=None, x_bins=None, x_ci='ci', scatter=True, fit_reg=True, ci=95, n_boot=1000, units=None, order=1, logistic=False, lowess=False, robust=False, logx=False, x_partial=None, y_partial=None, truncate=False, dropna=True, x_jitter=None, y_jitter=None, label=None, color=None, marker='o', scatter_kws=None, line_kws=None, ax=None)
order:多项式回归,控制进行回归的幂次,设定指数,可以用多项式拟合; logistic:逻辑回归; x_jitter,y_jitter:给x,y轴随机增加噪音点,设置这两个参数不影响最后的回归直线;
tips = sns.load_dataset("tips")
sns.regplot(x="total_bill", y="tip",data=tips)
plt.show()
2. lmplot(网格+回归图)
lmplot(网格+回归图) 相当于regplot(回归图)和网格的组合。
seaborn.lmplot(x, y, data, hue=None, col=None, row=None, palette=None, col_wrap=None, height=5, aspect=1, markers='o', sharex=True, sharey=True, hue_order=None, col_order=None, row_order=None, legend=True, legend_out=True, x_estimator=None, x_bins=None, x_ci='ci', scatter=True, fit_reg=True, ci=95, n_boot=1000, units=None, order=1, logistic=False, lowess=False, robust=False, logx=False, x_partial=None, y_partial=None, truncate=False, x_jitter=None, y_jitter=None, scatter_kws=None, line_kws=None, size=None)
- col,row:和前面一样,根据所指定属性在列,行上分类;
- col_wrap:指定每行的列数,最多等于col参数所对应的不同类别的数量;
- aspect:控制图的长宽比;
- robust:如果是True,使用statsmodels来估计一个稳健的回归(鲁棒线性模型)。这将减少异常值。请注意 logistic回归和robust回归相较于简单线性回归需要更大的计算量,其置信区间的产生也依赖于bootstrap采样,你可以关掉置信区间估计来提高速度(ci=None);
- lowess:如果是True,使用statsmodels来估计一个非参数的模型(局部加权线性回归)。这种方法具有最少的假设,尽管它是计算密集型的,但目前无法为这类模型绘制置信区间;
Matrix plots(矩阵图)
1. heatmap(热力图)
利用热力图可以看数据表里多个特征两两的相关性,类似于色彩矩阵
seaborn.heatmap(data, vmin=None, vmax=None, cmap=None, center=None, robust=False, annot=None, fmt='.2g', annot_kws=None, linewidths=0, linecolor='white', cbar=True, cbar_kws=None, cbar_ax=None, square=False, xticklabels='auto', yticklabels='auto', mask=None, ax=None, **kwargs)
- data:矩阵数据集,可以使numpy的数组(array),如果是pandas的dataframe,则df的index/column信息会分别对应到heatmap的columns和rows;
- vmax,vmin:图例中最大值和最小值的显示值,没有该参数时默认不显示;
- cmap:从数字到色彩空间的映射,取值是matplotlib包里的colormap名称或颜色对象,或者表示颜色的列表;
- center:数据表取值有差异时,设置热力图的色彩中心对齐值。通过设置center值,可以调整生成的图像颜色的整体深浅;设置center数据时,如果有数据溢出,则手动设置的vmax、vmin会自动改变 ;
- robust:默认取值False;如果是False,且没设定vmin和vmax的值,热力图的颜色映射范围根据具有鲁棒性的分位数设定,而不是用极值设定;
- annot(annotate的缩写):默认取值False;如果是True,在热力图每个方格写入数据;如果是矩阵,在热力图每个方格写入该矩阵对应位置数据;
- fmt:字符串格式代码,矩阵上标识数字的数据格式,比如保留小数点后几位数字;
- annot_kws:默认取值False;如果是True,设置热力图矩阵上数字的大小颜色字体;
- square:设置热力图矩阵小块形状,默认值是False;
- xticklabels, yticklabels:控制每行列标签名的输出。默认值是auto,自动选择标签的标注间距,将标签名不重叠的部分(或全部)输出。如果是True,则以DataFrame的列名作为标签名;
- mask:控制某个矩阵块是否显示出来。默认值是None。如果是布尔型的DataFrame,则将DataFrame里True的位置用白色覆盖掉。
# 绘制一个简单的numpy数组的热力图:
x = np.random.rand(10, 12)
print(x)
sns.heatmap(x)
plt.show()
# 显示数字和保留几位小数,并修改数字大小字体颜色格式:
x= np.random.rand(10, 10)
sns.heatmap(x,annot=True,annot_kws={'size':9,'weight':'bold', 'color':'w'},fmt='.2f')
plt.show()
2. clustermap(聚类图)
clustermap() 可以将矩阵数据集绘制为层次聚类热图。
# 抛砖引玉的画一下图
iris = sns.load_dataset("iris")
species = iris.pop("species")
sns.clustermap(iris)
plt.show()
FacetGrid()
FacetGrid() 用于初始化网格对象,每一个子图都称为一个格子。它其实就是我们之前学的relplot(),catplot()以及lmplot()这几个函数的一个上层类,我们可以根据自己的需求定制每个格子中画什么样的图形,使用更加自由。 在大多数情况下,与直接使用FacetGrid相比,使用图形级函数(例如relplot()或catart()要好得多。 eaborn.FacetGrid(data, row=None, col=None, hue=None, col_wrap=None, sharex=True, sharey=True, height=3, aspect=1, palette=None, row_order=None, col_order=None, hue_order=None, hue_kws=None, dropna=True, legend_out=True, despine=True, margin_titles=False, xlim=None, ylim=None, subplot_kws=None, gridspec_kws=None, size=None)
FacetGrid并不能直接绘制我们想要的图像,它的基本工作流程是FacetGrid使用数据集和用于构造网格的变量初始化对象。然后,可以通过调用FacetGrid.map()或将一个或多个绘图函数应用于每个子集 FacetGrid.map_dataframe(),最后,可以使用其他修改参数的方法调整绘图。
# 使用TIPS数据集初始化2x2个面网格:
tips = sns.load_dataset("tips")
sns.FacetGrid(tips, col="time", row="smoker") # 2*2
plt.show()
# 然后,在每个格子上绘制一个散点图,根据列和行进行分类,描述两个变量的联合分布:
tips = sns.load_dataset("tips")
g = sns.FacetGrid(tips, col="time", row="smoker")
g = g.map(plt.scatter, "total_bill", "tip", color="c") # g.map()需要传入一个绘图函数
plt.show()
PairGrid()
PairGrid() 用于绘制数据集中成对关系的子图网格。它的原理和我们之前的pairplot是一样的,但是前面我们可以发现pairplot绘制的图像上、下三角形是关于主对角线对称的,而PairGrid则可修改上、下三角形和主对角线的图像形状。
iris = sns.load_dataset("iris")
g = sns.PairGrid(iris,hue="species")
g = g.map_upper(sns.scatterplot)#在上对角线子图上用二元函数绘制的图
g = g.map_lower(sns.kdeplot)#在下对角线子图上用二元函数绘制的图
g = g.map_diag(sns.kdeplot)#对角线单变量子图
plt.show()
废弃 关联图
关联就是描述某个变量和宁一个变量之间的关系,包含了关联散布图和线型图
1.关联散布图
绘制函数: sns.scatterplot(x=None,y=None,hue=None,style=None,size=None,data=None) x、y是有关的两个变量数据集(一位的) hue,size、style显示不同的数据集条件类别 data制定的数据集
显示观察数据的分布,描述数据的相关性
seaborn.scatterplot(x=None, y=None, hue=None, style=None, size=None, data=None, palette=None, hue_order=None, hue_norm=None, sizes=None, size_order=None, size_norm=None, markers=True, style_order=None, x_bins=None, y_bins=None, units=None, estimator=None, ci=95, n_boot=1000, alpha='auto', x_jitter=None, y_jitter=None, legend='brief', ax=None, **kwargs) View Code
- x,y:输入的绘图数据,必须是数值型数据
- hue:对输入数据进行分组的序列,使用不同颜色对各组的数据加以区分
- size:对输入数据进行分组的序列,使用不同点尺寸对各组的数据加以区分
- style:对输入数据进行分组的序列,使用不同点标记对各组的数据加以区分
- data:pandas.DataFrame型参数,不能包含非数值型数据,否则会报错。使用该参数的好处为下列两种情况之一
- 第一种情况,快捷的绘制DataFrame内每一列的数据 sns.scatterplot(data=df)
- 第二种情况,输入绘图的x,y变量时,可以写简单一点 sns.scatterplot('a','b',data=df)
- palette:在对数据进行分组时,设置不同组数据的显示颜色。hue参数使用的是默认的颜色,如果需要更多的颜色选项,则需要通过调色盘来设置,可以使用seaborn.color_palette()函数来设置颜色
- hue_order:在使用hue参数对数据进行分组时,可以通过该参数设置数据组的显示顺序
- sizes:当使用size参数、以不同尺寸显示不同组数据时,可以通过sizes参数来设定具体的尺寸大小。该参数可以传入一个尺寸序列,也可以传入一个包含两个元素的元祖,分别制定尺寸的上下限。
- size_order:和hue_order参数作用一样,不过设置的是尺寸的显示顺序
- markers:当使用style参数、以不同的标记显示不同组数据时,可以通过该参数设置不同组数据的标记
import seaborn as sns
import matplotlib.pyplot as plt
sns.set_style("darkgrid")
iris=sns.load_dataset("iris")
iris.head()
plt.rcParams["figure.figsize"]=(20,10)
sns.scatterplot(data=tips,x='total_bill',y='tip',hue='sex',style='time',size='smoker')#大小显示smoker
2.关联线图
绘图函数: sns.lineplot(x=None,y=None,hue=None,data=None,style=None,size=None)
sns.lineplot(data=iris,x="petal_length",y="petal_width",hue="species")
3.散布图矩阵
散布图举证的作用是将数据集中的每一个变量之间逐个进行对比,呈现彼此之间的关系。
sns.pairplot(data=iris,hue="species")
4.分面网格关联图
在封面网格中绘制关联图使用sns。relplot函数来观察数据中的相关性 使用sns中自带的mpg汽油耗油量数据集
5. 直方图
在Seaborn使用distplot函数绘制,经常和密度图一起出现,dist图,统计学同没有定义 sns.distplot(a,bins=None,hist=True,kde=True) a的参数是一个单变量数据 bins柱子之间的间隔(柱子的数量) hist是否绘制直方图 kde是否绘制密度图
numpy.random.normal(loc=0,scale=1e-2,size=shape) ,意义如下:
- 参数loc(float):正态分布的均值,对应着这个分布的中心。loc=0说明这一个以Y轴为对称轴的正态分布,
- 参数scale(float):正态分布的标准差,对应分布的宽度,scale越大,正态分布的曲线越矮胖,scale越小,曲线越高瘦。
- 参数size(int 或者整数元组):输出的值赋在shape里,默认为None。
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
#高斯分布
X = np.random.normal(loc=0,scale=1,size=1000)
sns.distplot(X,color='red',bins=50)
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
#偏态分布 右偏态 正偏态
X = np.exp(np.random.normal(loc=0,scale=1,size=1000))
sns.distplot(X,color='red',bins=50)
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
#偏态分布 左偏态 负偏态
X = -np.exp(np.random.normal(loc=0,scale=1,size=1000))
sns.distplot(X,color='red',bins=50)
6. 密度图
密度图(kernel density)kde核密度 图形分为两种:单变量的kde和双轴KDE图形 单变量密度图
#单变量密度图
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
#偏态分布 左偏态 负偏态
X = np.random.normal(loc=0,scale=1,size=1000)
sns.kdeplot(X,color='red')
#双轴KDE图/等高线图,俯瞰,颜色越深,密度越大
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
#当前的数据一共500个样本 2个特征
X = np.random.normal(loc=0,scale=1,size=1000).reshape(500,2)
sns.kdeplot(X[:,0],X[:,1],color='green',shade=True)
7. 联合图
联合图将单变量的分布密度图和散布图或者是双变量的密度图结合在一起。 sns.jointplot(x,y,data=None,kind='scattter') kind参数是双变量图形的,默认是绘制scatter(散步),kde(双轴密度)、reg(回归)、hex(蜂窝)
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
X = np.random.normal(loc=0,scale=1,size=1000).reshape(500,2)
sns.jointplot(X[:,0],X[:,1],color='purple')
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
iris = sns.load_dataset('iris')
sns.jointplot(x='petal_length', y='petal_width', data=iris,color='purple',kind='reg')
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
sns.jointplot(x='petal_length', y='petal_width', data=iris,color='purple',kind='kde')
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
X = np.random.normal(loc=0,scale=1,size=1000).reshape(500,2)
sns.jointplot(X[:,0],X[:,1],color='orange',kind='hex')
8. 热力图
热力图(heatmap)是以举证的形式表现的,数据值越小颜色越深,数据越小反之,在机器学习中的分类学习,对比准确率的时候经常会使用。 sns.heatmap(data,vmin=None,vmax=None,cmap=None,annot=None)
- vmin和vmax,图例中最大值和最下值的显示
- cmap参数是设置颜色的
- annot参数,注解,在每一个单元格中显示数据
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
X = np.random.normal(loc=0,scale=1,size=36).reshape(6,6)
sns.heatmap(X,annot=True)
#混淆矩阵
plt.axis('image')
9. 线性回归图
线性回归图通过大量的数据找到模拟拟合线性回归的一种图形
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
iris = sns.load_dataset('iris')
sns.regplot(x='petal_length', y='petal_width', data=iris)
plt.axis('image')
10. 分面网格图
通过FacetGrid绘制网格,在网格中添加子图:
- 第一步使用sns.FacetGrid构造函数sns.FacetGrid(data,row=None,col=None,hue=None,col_wrap=None)
- 第二步使用FacetGrid.map方法:FacetGrid.map(func,*args,**kwargs)
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
mpg = sns.load_dataset('mpg')
#创建网格
parent = sns.FacetGrid(mpg,col='origin')
#func只得是想要画什么图形
parent.map(sns.scatterplot,'mpg','displacement')