7-72 成绩分析表

7-72 成绩分析表

某大学全校都开设C语言课程,每学年结束都按成绩进行统计和分析。请编写程序,输入优秀、良好、中等、及格和不及格的人数,输出成绩分析表。

输入样例
684 3290 7512 10958 37
输出样例
Rank      Number  Ratio
-----------------------
Excellent    684   3.0%
Good        3290  14.6%
Medium      7512  33.4%
Pass       10958  48.7%
Fail          37   0.2%
-----------------------
Total      22481 100.0%
#include<stdio.h>

int main() 
### DeepSeek-V3与Qwen2.5-72B在教育评估中的性能对比 #### 背景介绍 DeepSeek-V3 是一种基于大规模语言模型 (LLM) 的 MoE 架构实现,具有强大的参数规模和高效的推理能力[^1]。而 Qwen2.5-72B 则是由阿里云开发的大规模预训练语言模型,具备广泛的自然语言处理能力和多模态支持。 #### 教育类测评 C-Eval 表现分析 C-Eval 是一项专门针对大语言模型设计的综合性学术考试评测集,涵盖了多个学科领域,包括但不限于数学、物理、化学、历史和社会科学等。对于此类评测: - **DeepSeek-V3**: 由于其采用专家混合 (MoE) 技术,在特定任务上能够表现出更高的效率和准确性。然而,具体到 C-Eval 数据集的表现数据尚未公开披露,因此无法提供确切分数。 - **Qwen2.5-72B**: 已经经过大量中文语料库的微调,并且在多项基准测试中展现了卓越的成绩。特别是在涉及复杂逻辑推理的任务中,该模型展现出了较强的泛化能力。根据已知实验结果表明,Qwen 在类似的综合型学术评测集中通常能获得较高的平均分[^6]。 #### 代词消歧任务表现分析 代词消歧是一项重要的自然语言理解任务,旨在通过上下文信息判断代词所指代的对象。 - **DeepSeek-V3**: 鉴于其架构特点,可能更擅长处理某些类型的长依赖关系问题,这有助于提高代词消歧任务的效果。不过实际效果仍需依据具体的实验验证来确认。 - **Qwen2.5-72B**: 此版本进一步优化了对上下文中细微差别的捕捉能力,从而提升了它解决代词消歧这类需要深入理解句子间联系的问题的能力。已有研究表明,Qwen 类似型号在此类任务上有良好表现记录[^7]。 ```python def evaluate_pronoun_disambiguation(model, dataset): """ Evaluate the model's performance on pronoun disambiguation tasks. Args: model: Pre-trained language model. dataset: Dataset containing sentences with ambiguous pronouns. Returns: Accuracy score of the model on this task. """ correct_predictions = 0 total_instances = len(dataset) for instance in dataset: prediction = model.predict(instance['sentence']) if prediction == instance['correct_referent']: correct_predictions += 1 accuracy = correct_predictions / total_instances * 100 return f"{accuracy:.2f}%" ``` #### 结论 虽然两者都属于顶级水平的语言模型,但在缺乏直接比较的情况下很难断定哪一方绝对优于另一方。可以推测的是,如果仅考虑技术特性而不计资源消耗等因素的话,那么拥有更大参数量或者更适合当前应用场景特性的那个可能会稍占优势。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Likf(❁´◡`❁)

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值