二分查找算法
- 找大于等于数的第一个位置 (满足某个条件的第一个数)
- 找小于等于数的最后一个数 (满足某个条件的最后一个数)
- 查找最大值 (满足该边界的右边界)、
- 查找最小值 (满足该边界的左边界)
1. 查找大于等于数的第一个位置
int SearchLeft(int l, int r) {
while (l < r) {
int mid = (l + r) >> 1;
if (check(mid)) {
r = mid;
} else {
l = mid + 1;
}
}
return l;
}
- 注意该方法返回的下标不一定就是要查找的值,有可能数组中并没有该值,返回的是大于等于该数的第一个位置
- check(mid)即判断条件
示例
if (arr[mid] >= 3)
这样就是查找大于等于3的第一个元素下标
2. 查找数组中最后一个出现元素下标
int SearchRight(int l, int r) {
while (l < r) {
int mid = (l + r + 1) >> 1;
if (check(mid)) {
l = mid;
} else {
r = mid-1;
}
}
return r;
}
- 该模板同上
示例
if (arr[mid] <= 3)
这样就是查找小于等于该数的最后一个数
例题
给定一个按照升序排列的长度为 n 的整数数组,以及 q 个查询。
对于每个查询,返回一个元素 k 的起始位置和终止位置(位置从 0 开始计数)。
如果数组中不存在该元素,则返回 -1 -1
。
输入格式
第一行包含整数 n 和 q,表示数组长度和询问个数。
第二行包含 n 个整数(均在 1~10000 范围内),表示完整数组。
接下来 q 行,每行包含一个整数 k,表示一个询问元素。
输出格式
共 q 行,每行包含两个整数,表示所求元素的起始位置和终止位置。
如果数组中不存在该元素,则返回 -1 -1
。
数据范围
1 ≤ n ≤ 100000
1 ≤ q ≤ 10000
1 ≤ k ≤ 10000
输入样例:
6 3
1 2 2 3 3 4
3
4
5
输出样例:
3 4
5 5
-1 -1
代码
#include <iostream>
using namespace std;
int SearchLeft(int arr[], int len, int target) {
int left = 0;
int right = len - 1;
while (left < right) {
int mid = (left + right) / 2;
if (arr[mid] >= target) {
right = mid;
} else {
left = mid + 1;
}
}
return left;
}
int SearchRight(int arr[], int len, int target) {
int left = 0;
int right = len - 1;
while (left < right) {
int mid = (left + right + 1) / 2;
if (arr[mid] <= target) {
left = mid;
} else {
right = mid - 1;
}
}
return right;
}
int main() {
int n, m;
scanf("%d %d", &n, &m);
int arr[n];
for (int i = 0; i < n; ++i) {
scanf("%d", &arr[i]);
}
while (m--) {
int target = 0;
scanf("%d", &target);
int left = SearchLeft(arr, n, target);
int right = SearchRight(arr, n, target);
if (arr[left] == target) {
printf("%d %d\n",left,right);
} else{
printf("-1 -1\n");
}
}
return 0;
}