粗略概述
- HashMap 基于 Hash 算法实现,通过 put(key,value) 存储,get(key) 来获取 value
- 当传入 key 时,HashMap 会根据 key,调用 hash(Object key) 方法,计算出 hash 值,根据 hash 值将 “value” 保存在 “Node 对象”里,Node 对象保存在“数组”里
- 当计算出的 hash 值相同时,称之为 hash 冲突,HashMap 的做法是用链表和红黑树存储相同 hash 值的 value
- 当 hash 冲突的个数:小于等于 8 使用链表;大于 8 且 tab length 大于等于 64 时,使用红黑树解决链表查询慢的问题
链表节点Node
这是一个静态内部类,用来存取value
static class Node<K,V> implements Map.Entry<K,V> {
final int hash;// 哈希值
final K key;// key
V value;// value
Node<K,V> next;// 链表后置节点
// 构造初始化
Node(int hash, K key, V value, Node<K,V> next) {
this.hash = hash;
this.key = key;
this.value = value;
this.next = next;
}
public final K getKey() { return key; }
public final V getValue() { return value; }
public final String toString() { return key + "=" + value; }
// 每一个节点的hash值,是将key的hashCode 和 value的hashCode 亦或得到的。
public final int hashCode() {
return Objects.hashCode(key) ^ Objects.hashCode(value);
}
// 设置新的value 同时返回旧value
public final V setValue(V newValue) {
V oldValue = value;
value = newValue;
return oldValue;
}
// 重写equals(),也必须重写hashCode()
public final boolean equals(Object o) {
if (o == this)
return true;
if (o instanceof Map.Entry) {
Map.Entry<?,?> e = (Map.Entry<?,?>)o;
if (Objects.equals(key, e.getKey()) &&
Objects.equals(value, e.getValue()))
return true;
}
return false;
}
}
构造函数
注意一下数组类型成员变量哈希桶table,存放链表。
// 最大容量 2的30次方
static final int MAXIMUM_CAPACITY = 1 << 30;
// 默认的加载因子
static final float DEFAULT_LOAD_FACTOR = 0.75f;
// 哈希桶,存放链表。 长度是2的N次方,或者初始化时为0.
transient Node<K,V>[] table;
// 加载因子,用于计算哈希表元素数量的阈值。 threshold = 哈希桶.length * loadFactor;
final float loadFactor;
// 哈希表内元素数量的阈值,当哈希表内元素数量超过阈值时,会发生扩容resize()。
int threshold;
public HashMap() {
// 默认构造函数,赋值加载因子为默认的0.75f
this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
}
public HashMap(int initialCapacity) {
// 指定初始化容量的构造函数
this(initialCapacity, DEFAULT_LOAD_FACTOR);
}
// 同时指定初始化容量 以及 加载因子, 用的很少,一般不会修改loadFactor
public HashMap(int initialCapacity, float loadFactor) {
// 边界处理
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal initial capacity: " +
initialCapacity);
// 初始容量最大不能超过2的30次方
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
// 显然加载因子不能为负数
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal load factor: " +
loadFactor);
this.loadFactor = loadFactor;
// 设置阈值为 >=初始化容量的 2的n次方的值
this.threshold = tableSizeFor(initialCapacity);
}
// 新建一个哈希表,同时将另一个map m 里的所有元素加入表中
public HashMap(Map<? extends K, ? extends V> m) {
this.loadFactor = DEFAULT_LOAD_FACTOR;
putMapEntries(m, false);
}
put核心逻辑
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
// tab存放 当前的哈希桶, p用作临时链表节点
Node<K,V>[] tab; Node<K,V> p; int n, i;
// 如果当前哈希表是空的,代表是初始化( || 只要满足第一个条件,后面的条件就不再判断,)
// 注意这里的 成员变量table 赋值给了临时变量 tab
if ((tab = table) == null || (n = tab.length) == 0)
// 那么直接去扩容哈希表,并且将扩容后的哈希桶长度赋值给n
n = (tab = resize()).length;
// 如果当前index的节点是空的,表示没有发生哈希碰撞。 直接构建一个新节点Node,挂载在index处即可。
// index 是利用 哈希值 & 哈希桶的长度-1,替代模运算。n在上面if中赋值了
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
else {// 否则 发生了哈希冲突。
// e
Node<K,V> e; K k;
// 如果哈希值相等,key也相等,则覆盖value
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;// 将当前节点引用赋值给e
else if (p instanceof TreeNode)// p为红黑树类型
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
else {// 可能不是覆盖操作,则插入一个普通链表节点
// 遍历链表
for (int binCount = 0; ; ++binCount) {
if ((e = p.next) == null) {// 遍历到尾部,追加新节点到尾部
p.next = newNode(hash, key, value, null);
// 如果追加节点后,链表数量>=8,则转化为红黑树
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
// 如果找到了要覆盖的节点
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e; // 更新p便于指向下一个节点
}
}
// 如果e不是null,说明有需要覆盖的节点,
if (e != null) { // existing mapping for key
// 则覆盖节点值,并返回原oldValue
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
// 这是一个空实现的函数,用作LinkedHashMap重写使用。
afterNodeAccess(e);
return oldValue;
}
}
// 如果执行到了这里,说明插入了一个新的节点,所以会修改modCount,以及返回null。
// 修改modCount
++modCount;
// 更新size,并判断是否需要扩容。
if (++size > threshold)
resize();
// 这是一个空实现的函数,用作LinkedHashMap重写使用。
afterNodeInsertion(evict);
return null;
}
创建一个链表节点,存放了value
Node<K,V> newNode(int hash, K key, V value, Node<K,V> next) {
return new Node<>(hash, key, value, next);
}
扩容逻辑
final Node<K,V>[] resize() {
// oldTab 为当前表的哈希桶
Node<K,V>[] oldTab = table;
int oldCap = (oldTab == null) ? 0 : oldTab.length;// 当前哈希桶的容量 length
int oldThr = threshold; // 当前的阈值
int newCap, newThr = 0; // 初始化新的容量和阈值为0
if (oldCap > 0) {// 如果当前容量大于0
if (oldCap >= MAXIMUM_CAPACITY) {// 如果当前容量已经到达上限
threshold = Integer.MAX_VALUE;// 则设置阈值是2的31次方-1
return oldTab;// 同时返回当前的哈希桶,不再扩容
}// 否则新的容量为旧的容量的两倍。
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)// 如果旧的容量大于等于默认初始容量16
// 那么新的阈值也等于旧的阈值的两倍
newThr = oldThr << 1; // double threshold
}// 如果当前表是空的,但是有阈值。代表是初始化时指定了容量、阈值的情况
else if (oldThr > 0) // initial capacity was placed in threshold
newCap = oldThr;// 那么新表的容量就等于旧的阈值
else { // zero initial threshold signifies using defaults
// 如果当前表是空的,而且也没有阈值。代表是初始化时没有任何容量/阈值参数的情况
newCap = DEFAULT_INITIAL_CAPACITY;// 此时新表的容量为默认的容量 16
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);// 新的阈值为默认容量16 * 默认加载因子0.75f = 12
}
if (newThr == 0) {// 如果新的阈值是0,对应的是 当前表是空的,但是有阈值的情况
float ft = (float)newCap * loadFactor;// 根据新表容量 和 加载因子 求出新的阈值
// 进行越界修复
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
threshold = newThr;// 更新阈值
@SuppressWarnings({"rawtypes","unchecked"})
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];// 根据新的容量 构建新的哈希桶
table = newTab;// 更新哈希桶引用
// 如果以前的哈希桶中有元素
// 下面开始将当前哈希桶中的所有节点转移到新的哈希桶中
if (oldTab != null) {
// 遍历老的哈希桶
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;// 取出当前的节点 e
// 如果当前桶中有元素,则将链表赋值给e
if ((e = oldTab[j]) != null) {
oldTab[j] = null;// 将原哈希桶置空以便GC
if (e.next == null)// 如果当前链表中就一个元素,(没有发生哈希碰撞)
// 直接将这个元素放置在新的哈希桶里。
// 注意这里取下标 是用 哈希值 与 桶的长度-1 。 由于桶的长度是2的n次方,这么做其实是等于 一个模运算。但是效率更高
newTab[e.hash & (newCap - 1)] = e;
// 如果发生过哈希碰撞 ,而且是节点数超过8个,转化成了红黑树(暂且不谈 避免过于复杂, 后续专门研究一下红黑树)
else if (e instanceof TreeNode)
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
// 如果发生过哈希碰撞,节点数小于8个。则要根据链表上每个节点的哈希值,依次放入新哈希桶对应下标位置。
else { // preserve order
// 因为扩容是容量翻倍,所以原链表上的每个节点,现在可能存放在原来的下标,即low位, 或者扩容后的下标,即high位。 high位= low位+原哈希桶容量
// 低位链表的头结点、尾节点
Node<K,V> loHead = null, loTail = null;
// 高位链表的头节点、尾节点
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;// 临时节点 存放e的下一个节点
do {
next = e.next;// 这里又是一个利用位运算 代替常规运算的高效点: 利用哈希值 与 旧的容量,可以得到哈希值去模后,是大于等于oldCap还是小于oldCap,等于0代表小于oldCap,应该存放在低位,否则存放在高位
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;// 给头尾节点指针赋值
else
loTail.next = e;
loTail = e;
}// 高位也是相同的逻辑
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}// 循环直到链表结束
} while ((e = next) != null);
// 将低位链表存放在原index处,
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
// 将高位链表存放在新index处
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}