循环计算层的tensorflow描述

TF描述循环计算层:

tf.keras.layers.SimpleRNN(循环核中记忆体的个数,activation=‘激活函数’,return_sequences=是否每个时刻输出到ht到下一层)

activation=‘激活函数’:表示使用什么激活函数计算ht,如果不写,默认tanh
return_sequences=True:表示各时间步输出ht到下一层
return_sequences=False:表示仅在最后时间步输出ht(默认)
return_sequences=True:
在这里插入图片描述
return_sequences=False:
在这里插入图片描述
一般最后一层的循环核用False,中间层的循环核用True:表示每个时间步都把参数输出到下一层,仅在最后时间步输出ht
如下图:
在这里插入图片描述

如tf.keras.layers.SimpleRNN(3,return_sequences=True)

要求送入RNN的数据是三维的,即x_train是三维的:
[送入样本数,循环核时间展开步数,每个时间步输入特征个数]
在这里插入图片描述
如上图的第一个图:以关送入RNN2组数据,每组数据经过1个时间步即可输出结果,每个时间步送入3个数值。所以是[2,1,3]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值