2023年全国大学生电子设计竞赛E题总结分享(全国一等奖)

一、双追踪系统介绍

本篇文章重在分享自己的心得与感悟。识别部分使用openmv4进行激光点的识别,主控使用的是STM32,选的高精度舵机。作品(主云台)大概长下面这个样子:

摄像头固定,二位云台搭载激光笔运动。

二、摄像头识别部分:

主要就是调曝光度,曝光度高→激光点亮,但容易受外界杂光的影响;曝光度低→抗干扰性能较好,但很容易识别不到激光点。(参加过这个比赛的友友们肯定知道这个的痛)。

主系统发射红色激光,所以摄像头设置红色识别就行;从系统需要同时识别红色和绿色。下面是追踪过程中识别效果:

 OpenMV程序设计

总体设计:题目的选择是通过按下单片机的按键,由串口通信将题目序号发送至OpenMV,进而运行相应题目的程序。运动目标控制系统要求红色激光绕黑色矩形框一周,此系统的OpenMV将识别到的黑色矩形框的四个顶点以及实时的激光点的位置发送至主控,由主控进行云台的控制。自动追踪系统要求绿色激光跟踪红色激光点,此系统的OpenMV将实时识别到的红色激光点以及绿色激光点坐标发送至此系统主控,由主控进行云台的控制。

黑色矩形框识别设计:OpenMV将图像进行二值化处理,并再次经过副职膨胀后得到黑色矩形框的位置坐标,由于图像经过二值化处理后不易识别红绿色激光点,因此只让OpenMV返回固定次数的黑色矩形框的位置坐标,在原图像上面进行红绿激光点的识别。

红绿激光点的识别:经过多次测试发现颜色阈值的调节对激光点识别的影响较大,因此分别设定识别红绿激光点的两个阈值进行红绿激光点的识别。

三、主控部分:

这一部分不是我负责的,是我的两个队友负责的,我主要负责的是摄像头部分。主控部分长下面这个样:

STM32程序设计

对于红色激光笔云台的程序设计思路,首先是基础任务一,因为云台位置与一米前的屏幕位置相对固定,所以每次运动目标复位即红色激光云台每次回复到固定角度,我们设定x轴y轴均为90°为运动复位位置,每次按下对应按键,STM32发出指令控制云台回复到水平垂直各90°的状态。

对于基础任务二,首先考虑到由于云台的横向或者纵向移动对应投射在屏幕上的激光并非横向或者纵向,而是一条靠向中心的抛物线,通过设定屏幕中心为坐标原点,建立坐标系,设定直线方程,求解角度(详见循铅笔框算法),然后STM32控制云台从左上角的铅笔框顶点开始,每条线依照铅笔框长度50cm设定50的步长值,依次移动经过四个点,最后回到原点。

对于基础任务三,其实是基础任务四的特殊情况,为了程序的通用性,我们直接进行基础任务四的实现,这样同时也满足基础任务三的要求。不同于基础任务二,我们通过数学计算来得出屏幕上坐标与云台角度的对应关系,由于黑色长方形的任意角度和任意位置,我们再次通过位置进行结算得出各个顶点的角度十分的困难,因此我们直接通过增量式PID来弥补坐标与角度之间的关系,而不用每次都详细求出,通过云台激光走斜线算法,STM32接收到OpenMV发送的矩形顶点坐标和激光的实时坐标,从左上角的顶点开始,计算每条边的斜率,通过设定合适的步长值,实现增量式PID的目标值从从矩形的一个顶点沿矩形边长移动到另一个顶点,同时输入OpenMV实时识别到的激光坐标作为实际值,然后通过调节增量式PID的PI参数,实现云台控制激光在矩形黑框内的移动。

四、空间建模:

主要用于第一问的巡铅笔框

建立系统空间坐标系,规定系统复位时激光点位于屏幕中心,以复位时光源位置为坐标原点,水平平行屏幕方向为X轴,水平垂直屏幕方向为Y轴,垂直平行屏幕方向为Z轴建立空间坐标系。示意图如下图所示。

五、过程中遇到的棘手的问题

1.识别矩形框的顶点坐标不准确

问题

openmv调用函数识别矩形时会直接输出矩形的四个顶点,但是在实际操作中,目标是一个黑色矩形框,黑色边边是有宽度的,所以就会随机识别外矩形和内矩形,这就很麻烦,因为主控控制舵机运动就是根据这四个顶点。如果四个顶点的位置坐标不准确的话,舵机运动过程中激光点很容易偏离黑框。

解决方法

为了解决这个问题,我对图像进行二值化并腐蚀膨胀处理,可以得到外矩形,以外矩形为ROI区域识别内矩形,最后内外矩形顶点分别取平均值就可以准确的得到顶点坐标。当然,处理过程十分麻烦,这里就不多说了,有感兴趣的同学可以底下评论,我看到后会及时回复。

2.PID调参

这里问题可就太多了,稍微差一点就会导致舵机刹不住车,这里采用的具体的算法比较麻烦,会在设计报告中显示。

3.曝光值的选择

前面也提到曝光过高过低都会翻车,并且每个题目对曝光的要求都不一样,所以要选择合适的曝光,为了适应不同的环境,我们采用了4×4矩阵键盘实现曝光可调。

4.其他问题一下子想不起来了,想到后回来补充......

六、总结一下我的比赛经历叭

2022年参加山东省电子设计竞赛,选的双车跟踪系统,当时啥都不会,也不会PID,当时还限制TI的板子,队友也不太熟悉这块板子,所以当时我用OPENMV即巡线又输出信号控制电机运动,主控就用来传蓝牙了。当时吃的最大一个亏就是光线的问题,晚上测评,地上的黑线有反光,导致崩盘了,所以2023年的国赛可以说是吸取了22年惨败的经验哈哈。

2023年国赛初测,四天时间熬了2个通宵,推翻了一次又一次的实验方案,战到封箱那一刻。

综测是设计求解线性方程组的微型计算机,还好提前准备了各种电路,我和B队友负责方程的求解和电路的设计,队友A负责根据我俩的电路用面包板搭建实验,没问题的话就直接在板子上实焊。当时也是完成的比较漂亮。

复测没什么,就是直接上初测的大BOSS,主从系统拉到最远,间隔一米,我们的系统也是顶住了大鸭梨。

复测完第二天好像就出国奖获奖名单了。

最后附上国一证书照片,大家有什么问题的话可以私信问我(限openmv或者k210,因为我也不太熟悉stm32 *_*),附上本人企鹅号(3026599417),

. 使用jetson nano进行目标检测, 使用舵机进行控制, 使用串口进行通信 本项目为 矩形框识别 外围边线查找 部分.zip 1 目标检测的定义 目标检测(Object Detection)的任务是找出图像中所有感兴趣的目标(物体),确定它们的类别和位置,是计算机视觉领域的核心问之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具有挑战性的问。 目标检测任务可分为两个关键的子任务,目标定位和目标分类。首先检测图像中目标的位置(目标定位),然后给出每个目标的具体类别(目标分类)。输出结果是一个边界框(称为Bounding-box,一般形式为(x1,y1,x2,y2),表示框的左上角坐标和右下角坐标),一个置信度分数(Confidence Score),表示边界框中是否包含检测对象的概率和各个类别的概率(首先得到类别概率,经过Softmax可得到类别标签)。 1.1 Two stage方法 目前主流的基于深度学习的目标检测算法主要分为两类:Two stage和One stage。Two stage方法将目标检测过程分为两个阶段。第一个阶段是 Region Proposal 生成阶段,主要用于生成潜在的目标候选框(Bounding-box proposals)。这个阶段通常使用卷积神经网络(CNN)从输入图像中提取特征,然后通过一些技巧(如选择性搜索)来生成候选框。第二个阶段是分类和位置精修阶段,将第一个阶段生成的候选框输入到另一个 CNN 中进行分类,并根据分类结果对候选框的位置进行微调。Two stage 方法的优点是准确度较高,缺点是速度相对较慢。 常见Tow stage目标检测算法有:R-CNN系列、SPPNet等。 1.2 One stage方法 One stage方法直接利用模型提取特征值,并利用这些特征值进行目标的分类和定位,不需要生成Region Proposal。这种方法的优点是速度快,因为省略了Region Proposal生成的过程。One stage方法的缺点是准确度相对较低,因为它没有对潜在的目标进行预先筛选。 常见的One stage目标检测算法有:YOLO系列、SSD系列和RetinaNet等。 2 常见名词解释 2.1 NMS(Non-Maximum Suppression) 目标检测模型一般会给出目标的多个预测边界框,对成百上千的预测边界框都进行调整肯定是不可行的,需要对这些结果先进行一个大体的挑选。NMS称为非极大值抑制,作用是从众多预测边界框中挑选出最具代表性的结果,这样可以加快算法效率,其主要流程如下: 设定一个置信度分数阈值,将置信度分数小于阈值的直接过滤掉 将剩下框的置信度分数从大到小排序,选中值最大的框 遍历其余的框,如果和当前框的重叠面积(IOU)大于设定的阈值(一般为0.7),就将框删除(超过设定阈值,认为两个框的里面的物体属于同一个类别) 从未处理的框中继续选一个置信度分数最大的,重复上述过程,直至所有框处理完毕 2.2 IoU(Intersection over Union) 定义了两个边界框的重叠度,当预测边界框和真实边界框差异很小时,或重叠度很大时,表示模型产生的预测边界框很准确。边界框A、B的IOU计算公式为: 2.3 mAP(mean Average Precision) mAP即均值平均精度,是评估目标检测模型效果的最重要指标,这个值介于0到1之间,且越大越好。mAP是AP(Average Precision)的平均值,那么首先需要了解AP的概念。想要了解AP的概念,还要首先了解目标检测中Precision和Recall的概念。 首先我们设置置信度阈值(Confidence Threshold)和IoU阈值(一般设置为0.5,也会衡量0.75以及0.9的mAP值): 当一个预测边界框被认为是True Positive(TP)时,需要同时满足下面三个条件: Confidence Score > Confidence Threshold 预测类别匹配真实值(Ground truth)的类别 预测边界框的IoU大于设定的IoU阈值 不满足条件2或条件3,则认为是False Positive(FP)。当对应同一个真值有多个预测结果时,只有最高置信度分数的预测结果被认为是True Positive,其余被认为是False Positive。 Precision和Recall的概念如下图所示: Precision表示TP与预测边界框数量的比值
评论 40
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

qq_57819156

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值