分析GIS空间分析的特点与重要性
空间分布
空间特征是地理现象的最基本特征,根据地理现象的空间分布状况,我们可以用不同的空间维度来表达。GIS中空间分布对于点状地物具有总体分布特征比如(密集型,方向性等)。以及点状地物组成的形状所反映什么规律与信息;线状地物,线状符号来表示交通线、河流、山脉、等值线等。面状地物描述角度通常为范围(方位)+面积(大小、面积的变化)+伸展方向+极值区的分布。可见GIS空间分析可以充分表达地物的空间分布特征
举例:标准差椭圆法对于点状地物的空间分布方向性分析的经典方法之一,能够从全局角度,空间角度分析其地理空间数据中隐含的模式及、关系和趋势。
空间关系
GIS中存储了空间分布位置信息、属性信息、拓扑空间关系信息、地理要素之间具有拓扑空间关系。
举例:GIS空间分析在空间关系中的应用。ArcGIS可以融合矢量块,也可以拆分矢量块。也可以在矢量之间根据空间位置关系添加属性字段。地理加权回归也能体现空间关系中的空间异质性。此时地理学定律登场。地理学第二定律:空间异质性,地理现象的空间变化以及变化的差异性,即不可控的空间变化规律。
展现空间异质性的地理加权回归举例:
可见GIS区别于其他信息系统能够从空间,空间拓扑关系等角度出发,挖掘空间物体内在的关系,以及隐含在其中的模式和信息。
空间演化
GIS空间分析可以很容易进行时空演化的模拟与显示,从而展现出其中内在隐含信息。
举例:例如进行多时段的相同地物的特征变化,从而深入挖掘出其内在机理与隐含信息。
arcgis空间演变也可以进行土地利用类型的变化分析。同地理上变化从而挖掘隐含的人文与自然信息。
通过构建面板回归模型(panel regression model)来研究1999-2019年积雪保温层和融雪量的变化对小麦产量的影响,并将产量的年际变化进行环境因素的归因分析。并在RCP4.5(8.5)下应用此面板模型预测未来气候变化下的冬小麦产量,以评估气温升高、积雪变化和降水变化的产量影响。
可见GIS空间分析可以做到很好的预测未来地理环境的效果。
属性数据的扩展与再分析
属性数据的扩展与再分析例如可以进行属性数据的添加,从而展现出地物属性的不同而带来地理上的隐含信息。
举例:例如一些选址问题,交通可达性问题等。受到多个影响因素的影响从而可以进行属性信息的增加从而得到不同情形不同自然人文地理条件下的可行性方案。
数据分析扩展
我理解数据分析扩展的意思是在GIS空间分析中类似与其他信息系统都可以进行大数据的分析例如:基于“百度迁徙”人口流动数据的城市网络结构韧性测度这一分析来说。GIS空间分析可以得到大数据下基于空间位置的,通过图形操作与数学模型分析的空间数据中隐含的模式、关系和信息。从而解决复杂的地理问题进行研究。
宣传语
让我们在开放、包容、先进的大数据时代,通过GIS挖掘隐含在时空中的内在逻辑,从而解决各行各业直接与间接涉及空间的难题,达到历史数据的挖掘、当今道路的决策与未来事件的预报。