【通信原理】二、确知信号

一、确知信号类型

如果信号s(t)满足下述条件:
s ( t ) = s ( t + T 0 ) − ∞ < t < + ∞ s(t)=s(t+T_0)\quad-\infty < t <+\infty s(t)=s(t+T0)<t<+
则为周期信号最小 T 0 T_0 T0为此信号的周期, 1 T 0 \dfrac{1}{T_0} T01为基频 f 0 f_0 f0

通常把信号的功率定义为电流在单位电阻上消耗的功率,s(t)代表信号电压或者电流时间波形,则能量为:
E = ∫ − ∞ + ∞ s 2 ( t ) d t E=\int_{-\infty}^{+\infty}s^2(t)dt E=+s2(t)dt
平均功率为:
E = lim ⁡ T → ∞ 1 T ∫ − T / 2 + T / 2 s 2 ( t ) d t E=\lim_{T\to\infty}\dfrac{1}{T}\int_{-T/2}^{+T/2}s^2(t)dt E=TlimT1T/2+T/2s2(t)dt
我们将信号分为两类:

  1. 能量信号:能量为有限正值,平均功率为0
  2. 功率信号:能量无穷大,平均功率为正有限值

二、信号的频域性质

功率信号的频谱

对于周期为 T 0 T_0 T0的函数s(t),其频谱为下列积分变换:
C n = C ( n f 0 ) = 1 T 0 ∫ − T 0 / 2 + T 0 / 2 s ( t ) e − j 2 π n f 0 t d t C_n=C(nf_0)= \frac{1}{T_0}\int_{-T_0/2}^{+T_0/2}s(t)e^{-j2\pi nf_0t}dt Cn=C(nf0)=T01T0/2+T0/2s(t)ej2πnf0tdt
对于 C n C_n Cn,有:
C n = { a 0 2 n = 0 1 2 ( a n − j b n ) n > 0 1 2 ( a n + j b n ) n < 0 C_n= \begin{cases} \dfrac{a_0}{2}& \quad n=0\\ \\ \dfrac{1}{2}(a_n-jb_n)& \quad n>0\\ \\ \dfrac{1}{2}(a_n+jb_n)& \quad n<0\\ \end{cases} Cn=2a021(anjbn)21(an+jbn)n=0n>0n<0
a n a_n an b n b_n bn的值为:
{ a n = 2 T ∫ − T / 2 + T / 2 s ( t ) cos ⁡ 2 π n t T d t ( n = 0 、 1 、 2 、 . . . ) b n = 2 T ∫ − T / 2 + T / 2 s ( t ) sin ⁡ 2 π n t T d t ( n = 0 、 1 、 2 、 . . . ) \left\{ \begin{aligned} a_n=\dfrac{2}{T}\int_{-T/2}^{+T/2}s(t)\cos\dfrac{2\pi nt}{T}dt \quad&(n=0、1、2、...) \\ \\ b_n=\dfrac{2}{T}\int_{-T/2}^{+T/2}s(t)\sin\dfrac{2\pi nt}{T}dt \quad&(n=0、1、2、...) \end{aligned} \right. an=T2T/2+T/2s(t)cosT2πntdtbn=T2T/2+T/2s(t)sinT2πntdt(n=012...)(n=012...)

说明 C n C_n Cn C − n C_{-n} Cn互为共轭复数
周期性函数可以傅里叶展开为:
s ( t ) = ∑ n = − ∞ ∞ C n e j 2 π n t / T 0 s(t)=\sum_{n=-\infty}^\infty C_ne^{j2\pi nt/T_0} s(t)=n=Cnej2πnt/T0

当s(t)为实函数,且为偶信号时,由函数的奇偶性可得 C n C_n Cn只有实部

能量信号的频谱密度

能量信号s(t)的傅里叶变换S(f)为频谱密度:
S ( f ) = ∫ − ∞ ∞ s ( t ) e − j 2 π f t d t S(f)=\int_{-\infty}^{\infty}s(t)e^{-j2\pi ft}dt S(f)=s(t)ej2πftdt
比较周期功率信号和能量信号的频谱:

  • S(f)连续,而 C n C_n Cn是离散的
  • S(f)单位为(V/Hz), C n C_n Cn的单位为(V)
    同样的,能量信号频谱密度正频率和负频率互为共轭复数

单位门函数

r e c t ( t / τ ) = G τ ( t ) = { 1 ∣ t ∣ ≤ τ / 2 0 ∣ t ∣ ≥ τ / 2 rect(t/\tau)=G_\tau(t)= \left\{ \begin{aligned} 1\quad&\lvert t\rvert\leq\tau/2 \\ 0\quad&\lvert t\rvert\geq\tau/2 \\ \end{aligned} \right. rect(t/τ)=Gτ(t)={10tτ/2tτ/2
傅里叶变换得:
G τ ( f ) = τ S a ( π f τ ) G_\tau(f)= \tau Sa(\pi f\tau) Gτ(f)=τSa(πfτ)

冲激函数

其定义为:
{ ∫ − ∞ ∞ δ ( t ) d t = 1 δ ( t ) = 0 t ≠ 0 \left\{ \begin{aligned} \int_{-\infty}^{\infty}\delta(t)dt=1\\ \\ \delta(t)=0\qquad t\ne0 \end{aligned} \right. δ(t)dt=1δ(t)=0t=0
性质有:
δ ( t ) = lim ⁡ k → ∞ k π S a ( k t ) \delta(t)=\lim_{k\to\infty}\dfrac{k}{\pi}Sa(kt) δ(t)=klimπkSa(kt)
频谱密度 Δ ( f ) = 1 \Delta(f)=1 Δ(f)=1,故冲激函数各个频率分量均匀分布在整个频率轴上

冲激函数的筛选特性:

f ( t 0 ) = ∫ − ∞ ∞ f ( t ) δ ( t − t 0 ) d t f(t_0)=\int_{-\infty}^{\infty}f(t)\delta(t-t_0)dt f(t0)=f(t)δ(tt0)dt
和单位阶跃函数的关系:
u ′ ( t ) = δ ( t ) u'(t)=\delta(t) u(t)=δ(t)

一些常用信号的傅里叶变换

在这里插入图片描述

能量信号的能量频谱密度

能量信号s(t)的能量E定义为:
E = ∫ − ∞ ∞ s 2 ( t ) d t E=\int_{-\infty}^{\infty}s^2(t)dt E=s2(t)dt
由巴塞伐尔定理得:
E = ∫ − ∞ ∞ s 2 ( t ) d t = ∫ − ∞ ∞ ∣ S ( f ) ∣ 2 d f E=\int_{-\infty}^{\infty}s^2(t)dt =\int_{-\infty}^{\infty}\lvert S(f)\rvert^2df E=s2(t)dt=S(f)2df
能量谱密度定义为:
G ( f ) = ∣ S ( f ) ∣ 2 ( J / H z ) G(f)=\lvert S(f)\rvert^2\quad(J/Hz) G(f)=S(f)2(J/Hz)

功率信号的功率谱密度

对于一个功率信号而言,其功率谱密度为:
P ( f ) = lim ⁡ T → ∞ 1 T ∣ S T ( f ) ∣ 2 P(f)=\lim_{T\to\infty}\dfrac{1}{T}\lvert S_T(f)\rvert^2 P(f)=TlimT1ST(f)2
则功率为:
P = ∫ − ∞ ∞ P ( f ) d f P=\int_{-\infty}^{\infty}P(f)df P=P(f)df

对于周期功率信号而言,其功率谱密度结合前面得公式可得:
P ( f ) = ∑ − ∞ ∞ ∣ C ( f ) ∣ 2 δ ( f − n f 0 ) C ( f ) = { C n f = n f 0 0 e l s e P(f)=\sum_{-\infty}^{\infty}\lvert C(f)\rvert^2\delta(f-nf_0)\\ \\ C(f)= \begin{cases} C_n\quad&f=nf_0\\ 0\quad&else \end{cases} P(f)=C(f)2δ(fnf0)C(f)={Cn0f=nf0else


三、确知信号得时域性质

能量信号的自相关函数

能量信号的自相关函数定义为:
R ( τ ) = ∫ − ∞ ∞ s ( t ) s ( t + τ ) d t − ∞ < τ < ∞ R(\tau)=\int_{-\infty}^{\infty}s(t)s(t+\tau)dt\quad-\infty<\tau<\infty R(τ)=s(t)s(t+τ)dt<τ<
自相关函数只与时间差有关,与时间无关
自相关函数与能量谱密度得关系为一对傅里叶变换:
R ( τ ) = ∫ − ∞ ∞ ∣ S ( f ) ∣ 2 e j 2 π f τ d f R(\tau)=\int_{-\infty}^{\infty}\rvert S(f)\rvert^2e^{j2\pi f\tau}df R(τ)=S(f)2ej2πfτdf

功率信号自相关函数

功率信号的自相关函数定义为:
R ( τ ) = lim ⁡ T → ∞ 1 T ∫ − T / 2 T / 2 s ( t ) s ( t + τ ) d t − ∞ < τ < ∞ R(\tau)=\lim_{T\to\infty}\dfrac{1}{T}\int_{-T/2}^{T/2}s(t)s(t+\tau)dt\quad-\infty<\tau<\infty R(τ)=TlimT1T/2T/2s(t)s(t+τ)dt<τ<
对于周期信号,自相关函数为:
R ( τ ) = 1 T 0 ∫ − T 0 / 2 T 0 / 2 s ( t ) s ( t + τ ) d t − ∞ < τ < ∞ R(\tau)=\dfrac{1}{T_0}\int_{-T_0/2}^{T_0/2}s(t)s(t+\tau)dt\quad-\infty<\tau<\infty R(τ)=T01T0/2T0/2s(t)s(t+τ)dt<τ<
同样的,对于功率信号也有:
R ( τ ) = ∫ − ∞ ∞ P ( f ) e j 2 π f τ d f R(\tau)=\int_{-\infty}^{\infty}P(f)e^{j2\pi f\tau}df R(τ)=P(f)ej2πfτdf
自相关函数都为偶函数

能量信号的互相关系数

对与两个能量信号,互相关函数为:
R 12 ( τ ) = ∫ − ∞ ∞ s 1 ( t ) s 2 ( t + τ ) d t − ∞ < τ < ∞ R_{12}(\tau)=\int_{-\infty}^{\infty}s_1(t)s_2(t+\tau)dt\quad-\infty<\tau<\infty R12(τ)=s1(t)s2(t+τ)dt<τ<
表示一个能量信号延迟后与另一个能量信号得相关程度,同样也只和时间差有关。要注意两个信号相乘由顺序先后:
R 21 ( τ ) = R 12 ( − τ ) R_{21}(\tau)=R_{12}(-\tau) R21(τ)=R12(τ)

互能量谱密度:
S 12 ( f ) = S 1 ∗ ( f ) S 2 ( f ) S_{12}(f)=S_1^\ast(f)S_2(f) S12(f)=S1(f)S2(f)
R 12 ( τ ) R_{12}(\tau) R12(τ)傅里叶变换后得到 S 12 ( f ) S_{12}(f) S12(f)

功率信号的互相关函数

对与两个功率信号,互相关函数为:
R 12 ( τ ) = lim ⁡ T → ∞ 1 T ∫ − T / 2 T / 2 s 1 ( t ) s 2 ( t + τ ) d t − ∞ < τ < ∞ R_{12}(\tau)=\lim_{T\to\infty}\dfrac{1}{T}\int_{-T/2}^{T/2}s_1(t)s_2(t+\tau)dt\quad-\infty<\tau<\infty R12(τ)=TlimT1T/2T/2s1(t)s2(t+τ)dt<τ<
对于周期信号,互相关函数为:
R 12 ( τ ) = 1 T 0 ∫ − T 0 / 2 T 0 / 2 s 1 ( t ) s 2 ( t + τ ) d t − ∞ < τ < ∞ R_{12}(\tau)=\dfrac{1}{T_0}\int_{-T_0/2}^{T_0/2}s_1(t)s_2(t+\tau)dt\quad-\infty<\tau<\infty R12(τ)=T01T0/2T0/2s1(t)s2(t+τ)dt<τ<
同样的,互功率谱:
C 12 = ( C n ) 1 ∗ ( C n ) 2 C_{12}=(C_n)_1^\ast(C_n)_2 C12=(Cn)1(Cn)2
R 12 ( τ ) R_{12}(\tau) R12(τ) 傅 里 叶 变 换 后 得 到 傅里叶变换后得到 C 12 C_{12} C12

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值