第八章
1.向量
1.1.向量的基本内容
1、定义:有方向且有大小的量
2、性质:表示、相等向量、单位向量、向量的模、平行向量、向量坐标、方向角与方向余弦、投影
1.2.向量的线性运算
加减法、数乘、运算律
2.数量积、向量积和混合积
3.平面及其方程
3.1.平面的方程:
法线向量、点法式、截距式、三点式、一般式
3.2.两平面的夹角
3.3.点到平面的距离公式
4.空间直线及其方程
直线的方程、直线的位置关系、直线与平面的位置关系、距离公式
5.曲面及其方程
空间曲面的S的方程、旋转曲面方程、柱面方程、二次曲面(9种)
6.空间曲线及其方程
空间曲线的一般方程、参数方程、投影
第九章
1、平面点集、二元函数及其极限和连续
2、偏导数和高阶偏导数
3、全微分的定义、可微的条件、全微分在近似计算的应用
4、一元函数与多元函数复合的情形、多元函数与多元函数复合的情形
5、隐含数的求导公式
6、一元向量值函数、空间曲线的切线与法平面、曲面的切平面和法线
7、方向导数、梯度及两者的关系
8、极值
9、泰勒公式(不在考试范围)
第十章
1、二重积分的几何意义与物理意义、存在性与性质
2、二重积分在直角坐标系的计算法、在极坐标种的计算法
3、三重积分的几何与物理意义、性质和计算法
4、重积分的几何、物理中的应用
目录