1.3 一元函数积分学

第一章 数学分析

全文均为手敲,如果发现有误,请于评论区交流讨论留言,作者会及时修改

1.3 一元函数积分学

  1. 不定积分

    对函数 f ( x ) f(x) f(x),若存在函数 F ( x ) F(x) F(x),使得在区间 I I I上有 F ′ ( x ) = f ( x ) F'(x)=f(x) F(x)=f(x),则 F ( x ) F(x) F(x) f ( x ) f(x) f(x) I I I上的原函数。

    ∫ f ( x ) d x \int f(x)dx f(x)dx为全体原函数,表示一个函数族

    ∫ f ( x ) d x = ∫ d F ( x ) = F ( x ) + C \int f(x)dx=\int dF(x)=F(x)+C f(x)dx=dF(x)=F(x)+C

    F ( x ) + C F(x)+C F(x)+C为函数 f ( x ) f(x) f(x)的不定积分。

  2. 常用积分公式(求导部分出现过的不再介绍)

    ( 1 ) ∫ 1 x d x = ln ⁡ ∣ x ∣ + C ( 2 ) ∫ csc ⁡ x d x = ln ⁡ ∣ csc ⁡ x − cot ⁡ x ∣ + C ( 3 ) ∫ sec ⁡ x d x = ln ⁡ ∣ sec ⁡ x + tan ⁡ x ∣ + C ( 4 ) ∫ tan ⁡ x d x = − ln ⁡ ∣ cos ⁡ x ∣ + C ( 5 ) ∫ cot ⁡ x d x = ln ⁡ ∣ sin ⁡ x ∣ + C ( 6 ) ∫ 1 x 2 + a 2 d x = 1 a arctan ⁡ x a + C ( 7 ) ∫ 1 a 2 − x 2 d x = arcsin ⁡ x a + C ( 8 ) ∫ 1 a 2 − x 2 d x = 1 2 a ln ⁡ ∣ a + x a − x ∣ + C ( 9 ) ∫ 1 x 2 − a 2 d x = 1 2 a ln ⁡ ∣ a − x a + x ∣ + C ( 10 ) ∫ 1 x 2 ± a 2 d x = ln ⁡ ∣ x + x 2 ± a 2 ∣ + C ( 11 ) ∫ x 1 + x 2 d x = 1 + x 2 + C \begin{aligned} &(1)\int \frac 1 xdx=\ln|x|+C\\ &(2)\int\csc xdx=\ln|\csc x-\cot x|+C\\ &(3)\int\sec xdx=\ln|\sec x+\tan x|+C\\ &(4)\int\tan xdx=-\ln|\cos x|+C\\ &(5)\int\cot xdx=\ln|\sin x|+C\\ &(6)\int\frac 1{x^2+a^2}dx=\frac 1a\arctan\frac xa+C\\ &(7)\int\frac 1{\sqrt{a^2-x^2}}dx=\arcsin\frac xa+C\\ &(8)\int\frac 1{a^2-x^2}dx=\frac 1{2a}\ln|\frac{a+x}{a-x}|+C\\ &(9)\int\frac 1{x^2-a^2}dx=\frac 1{2a}\ln|\frac{a-x}{a+x}|+C\\ &(10)\int\frac 1{\sqrt{x^2\pm a^2}}dx=\ln|x+\sqrt{x^2\pm a^2}|+C\\ &(11)\int\frac{x}{\sqrt{1+x^2}}dx=\sqrt{1+x^2}+C \end{aligned} (1)x1dx=lnx+C(2)cscxdx=lncscxcotx+C(3)secxdx=lnsecx+tanx+C(4)tanxdx=lncosx+C(5)cotxdx=lnsinx+C(6)x2+a21dx=a1arctanax+C(7)a2x2 1dx=arcsinax+C(8)a2x21dx=2a1lnaxa+x+C(9)x2a21dx=2a1lna+xax+C(10)x2±a2 1dx=lnx+x2±a2 +C(11)1+x2 xdx=1+x2 +C

  3. 积分求解常用换元方法

    三角换元、倒代换、有理分式拆分、凑微分(技巧性最强)、奇偶性构造(定积分)

  4. 定积分的基本性质

    ( 1 ) 若 f ( x ) ≥ g ( x ) , 则 ∫ a b f ( x ) d x ≥ ∫ a b g ( x ) d x ( 2 ) 若 m ≤ f ( x ) ≤ M ,则 m ( b − a ) ≤ ∫ a b f ( x ) d x ≤ M ( b − a ) \begin{aligned} &(1)若f(x)\ge g(x),则\int_a^bf(x)dx\ge\int_a^bg(x)dx\\ &(2)若m\le f(x)\le M,则m(b-a)\le\int_a^bf(x)dx\le M(b-a) \end{aligned} (1)f(x)g(x),abf(x)dxabg(x)dx(2)mf(x)M,则m(ba)abf(x)dxM(ba)

  5. 第一积分中值定理

    若函数 f ( x ) , g ( x ) f(x),g(x) f(x),g(x) [ a , b ] [a,b] [a,b]上连续,且 g ( x ) g(x) g(x) [ a , b ] [a,b] [a,b]上不变号,则

    ∃ ξ ∈ [ a , b ] , s . t . ∫ a b f ( x ) g ( x ) d x = f ( ξ ) ∫ a b g ( x ) d x \exist\xi\in[a,b],s.t.\int_a^bf(x)g(x)dx=f(\xi)\int_a^bg(x)dx ξ[a,b],s.t.abf(x)g(x)dx=f(ξ)abg(x)dx

    特别地,若函数 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上连续,则

    ∃ ξ ∈ [ a , b ] , s . t . ∫ a b f ( x ) d x = f ( ξ ) ( b − a ) \exist\xi\in[a,b],s.t.\int_a^bf(x)dx=f(\xi)(b-a) ξ[a,b],s.t.abf(x)dx=f(ξ)(ba)

  6. 第二积分中值定理

    若函数 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上可积, g ( x ) g(x) g(x) [ a , b ] [a,b] [a,b]上单调递减,且 g ( x ) ≥ 0 g(x)\ge0 g(x)0,则

    ∃ ξ ∈ [ a , b ] , s . t . ∫ a b f ( x ) g ( x ) d x = g ( a ) ∫ a ξ f ( x ) d x \exist\xi\in[a,b],s.t.\int_a^bf(x)g(x)dx=g(a)\int_a^\xi f(x)dx ξ[a,b],s.t.abf(x)g(x)dx=g(a)aξf(x)dx

    若函数 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上可积, g ( x ) g(x) g(x) [ a , b ] [a,b] [a,b]上单调递增,且 g ( x ) ≥ 0 g(x)\ge0 g(x)0,则

    ∃ η ∈ [ a , b ] , s . t . ∫ a b f ( x ) g ( x ) d x = g ( b ) ∫ η b f ( x ) d x \exist\eta\in[a,b],s.t.\int_a^bf(x)g(x)dx=g(b)\int_\eta^b f(x)dx η[a,b],s.t.abf(x)g(x)dx=g(b)ηbf(x)dx

  7. 第三积分中值定理

    设函数 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上可积, g ( x ) g(x) g(x) [ a , b ] [a,b] [a,b]上单调,则

    ∃ ξ ∈ [ a , b ] , s . t . ∫ a b f ( x ) g ( x ) d x = g ( a ) ∫ a ξ f ( x ) d x + g ( b ) ∫ ξ b f ( x ) d x \exist\xi\in[a,b],s.t.\int_a^bf(x)g(x)dx=g(a)\int_a^\xi f(x)dx+g(b)\int_\xi^bf(x)dx ξ[a,b],s.t.abf(x)g(x)dx=g(a)aξf(x)dx+g(b)ξbf(x)dx

  8. 微积分基本定理: N e w t o n − L e i b n i z Newton-Leibniz NewtonLeibniz公式

    F ( x ) F(x) F(x)是连续函数 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上的一个原函数,则

    ∫ a b f ( x ) d x = F ( b ) − F ( a ) \int_a^bf(x)dx=F(b)-F(a) abf(x)dx=F(b)F(a)

  9. 变上限函数求导公式

    d d x ∫ v ( x ) u ( x ) f ( t ) d t = f [ u ( x ) ] u ′ ( x ) − f [ v ( x ) ] v ′ ( x ) \frac{d}{dx}\int_{v(x)}^{u(x)}f(t)dt=f[u(x)]u'(x)-f[v(x)]v'(x) dxdv(x)u(x)f(t)dt=f[u(x)]u(x)f[v(x)]v(x)

  10. 对称区间的定积分

    f ( x ) f(x) f(x)在对称区间 [ − a , a ] [-a,a] [a,a]上可积,则

    若 f ( x ) 是偶函数 , 则 ∫ − a a f ( x ) d x = 2 ∫ 0 a f ( x ) d x 若 f ( x ) 是奇函数 , 则 ∫ − a a f ( x ) d x = 0 \begin{aligned} &若f(x)是偶函数,则\int_{-a}^af(x)dx=2\int_0^af(x)dx\\ &若f(x)是奇函数,则\int_{-a}^af(x)dx=0 \end{aligned} f(x)是偶函数,aaf(x)dx=20af(x)dxf(x)是奇函数,aaf(x)dx=0

  11. 定积分的几何应用

    平面图形的面积

    直角坐标形式 : ∫ a b f ( x ) d x , ( x , y ) ∈ [ a , b ] × [ 0 , f ( x ) ] 极坐标形式 : ∫ α β 1 2 r 2 ( θ ) d θ , ( r , θ ) ∈ [ 0 , r ( θ ) ] × [ α , β ] 参数形式 : ∫ u v y ( t ) d x ( t ) , ( x , y ) ∈ [ x ( u ) , x ( v ) ] × [ 0 , y ( t ) ] \begin{aligned} &直角坐标形式:\int_a^bf(x)dx,(x,y)\in[a,b]\times[0,f(x)]\\ &极坐标形式:\int_\alpha^\beta\frac 12r^2(\theta)d\theta,(r,\theta)\in[0,r(\theta)]\times[\alpha,\beta]\\ &参数形式:\int_u^vy(t)dx(t),(x,y)\in[x(u),x(v)]\times[0,y(t)] \end{aligned} 直角坐标形式:abf(x)dx,(x,y)[a,b]×[0,f(x)]极坐标形式:αβ21r2(θ)dθ,(r,θ)[0,r(θ)]×[α,β]参数形式:uvy(t)dx(t),(x,y)[x(u),x(v)]×[0,y(t)]

    曲线 y = f ( x ) y=f(x) y=f(x) y y y轴旋转得到的旋转体体积

    直角坐标形式 : ∫ a b 2 π f ( x ) x d x 参数形式 : ∫ u v 2 π x ( t ) y ( t ) d x ( t ) \begin{aligned} &直角坐标形式:\int_a^b2\pi f(x)xdx\\ &参数形式:\int_u^v2\pi x(t)y(t)dx(t) \end{aligned} 直角坐标形式:ab2πf(x)xdx参数形式:uv2πx(t)y(t)dx(t)

    曲线 y = f ( x ) y=f(x) y=f(x) x x x轴旋转得到的旋转曲面面积

    直角坐标形式 : 2 π ∫ a b y 1 + [ f ′ ( x ) ] 2 d x 参数形式 : 2 π ∫ u v y ( t ) 1 + ( d y d x ) 2 d x ( t ) \begin{aligned} &直角坐标形式:2\pi\int_a^by\sqrt{1+[f'(x)]^2}dx\\ &参数形式:2\pi\int_u^vy(t)\sqrt{1+(\frac{dy}{dx})^2}dx(t) \end{aligned} 直角坐标形式:2πaby1+[f(x)]2 dx参数形式:2πuvy(t)1+(dxdy)2 dx(t)

    平面曲线的弧长公式

    直角坐标形式 : ∫ a b 1 + ( y ′ ) 2 d x = ∫ a b ( d x ) 2 + ( d y ) 2 参数形式 : ∫ u v ( d x d t ) 2 + ( d y d t ) 2 d t 极坐标形式 : ∫ α β [ r ( θ ) ] 2 + [ r ′ ( θ ) ] 2 d θ \begin{aligned} &直角坐标形式:\int_a^b\sqrt{1+(y')^2}dx=\int_a^b\sqrt{(dx)^2+(dy)^2}\\ &参数形式:\int_u^v\sqrt{(\frac{dx}{dt})^2+(\frac{dy}{dt})^2}dt\\ &极坐标形式:\int_\alpha^\beta\sqrt{[r(\theta)]^2+[r'(\theta)]^2}d\theta \end{aligned} 直角坐标形式:ab1+(y)2 dx=ab(dx)2+(dy)2 参数形式:uv(dtdx)2+(dtdy)2 dt极坐标形式:αβ[r(θ)]2+[r(θ)]2 dθ

  12. 曲率公式

    K = lim ⁡ Δ s → 0 Δ φ Δ s = ∣ y ′ ′ ∣ ( 1 + y ′ 2 ) 3 2 K=\lim_{\Delta s\to0}\frac{\Delta\varphi}{\Delta s}=\frac{|y''|}{(1+y'^2)^{\frac 32}} K=Δs0limΔsΔφ=(1+y′2)23y′′

    曲率半径

    R = 1 K = ( 1 + y ′ 2 ) 3 2 ∣ y ′ ′ ∣ R=\frac 1K=\frac{(1+y'^2)^{\frac 32}}{|y''|} R=K1=y′′(1+y′2)23

  13. 无穷积分

    ∫ a ∞ f ( x ) d x = lim ⁡ A → ∞ ∫ a A f ( x ) d x \int_a^\infty f(x)dx=\lim_{A\to\infty}\int_a^Af(x)dx af(x)dx=AlimaAf(x)dx

  14. 绝对收敛

    若 ∫ a ∞ ∣ f ( x ) ∣ d x 收敛,则称 ∫ a ∞ f ( x ) d x 绝对收敛,且 ∫ a ∞ f ( x ) d x 收敛。 若\int_a^{\infty}|f(x)|dx收敛,则称\int_a^\infty f(x)dx绝对收敛,且\int_a^\infty f(x)dx收敛。 af(x)dx收敛,则称af(x)dx绝对收敛,且af(x)dx收敛。

  15. C a u c h y Cauchy Cauchy收敛原理

    ∫ a ∞ f ( x ) d x \int_a^\infty f(x)dx af(x)dx收敛的充要条件是

    ∀ ε > 0 , ∃ X ( ε ) ∈ R , s . t . ∀ A 2 > A 1 > X , ∣ ∫ A 1 A 2 f ( x ) d x ∣ < ε \forall \varepsilon>0,\exist X(\varepsilon)\in\R,s.t.\forall A_2>A_1>X,|\int_{A_1}^{A_2}f(x)dx|<\varepsilon ε>0,X(ε)R,s.t.∀A2>A1>X,A1A2f(x)dx<ε

  16. 比较判别法

    f ( x ) , g ( x ) f(x),g(x) f(x),g(x) [ a , + ∞ ) [a,+\infty) [a,+)上的非负函数,且有 lim ⁡ x → + ∞ f ( x ) g ( x ) = l \lim\limits_{x\to+\infty}\frac{f(x)}{g(x)}=l x+limg(x)f(x)=l,则

    ( 1 ) 若 l < + ∞ , 则级数 ∫ a + ∞ g ( x ) d x 收敛时 , ∫ a + ∞ f ( x ) d x 收敛 ( 2 ) 若 l > 0 , 则级数 ∫ a + ∞ g ( x ) d x 发散时 , ∫ a + ∞ f ( x ) d x 发散 \begin{aligned} &(1)若l<+\infty,则级数\int_a^{+\infty}g(x)dx收敛时,\int_a^{+\infty}f(x)dx收敛\\ &(2)若l>0,则级数\int_a^{+\infty}g(x)dx发散时,\int_a^{+\infty}f(x)dx发散 \end{aligned} (1)l<+,则级数a+g(x)dx收敛时,a+f(x)dx收敛(2)l>0,则级数a+g(x)dx发散时,a+f(x)dx发散

  17. P P P级数敛散性讨论

    ∫ 1 + ∞ 1 x p d x { 发散 , p ≤ 1 收敛 , p > 1 ∫ 0 1 1 x p d x { 收敛 , p < 1 发散 , p ≥ 1 \begin{aligned} &\int_1^{+\infty}\frac 1{x^p}dx\begin{cases}发散,p\le 1\\收敛,p>1\end{cases}\\ &\int_0^1\frac 1{x^p}dx\begin{cases}收敛,p<1\\发散,p\ge 1\end{cases} \end{aligned} 1+xp1dx{发散,p1收敛,p>101xp1dx{收敛,p<1发散,p1

  18. D i r i c h l e t Dirichlet Dirichlet判别法

    若区间 [ a , + ∞ ) [a,+\infty) [a,+)上定义的函数 f ( x ) , g ( x ) f(x),g(x) f(x),g(x)满足

    ( 1 ) F ( A ) = ∫ a A f ( x ) d x 在 [ a , + ∞ ) 有界 ( 2 ) g ( x ) 在 [ a , + ∞ ) 单调 , 且 lim ⁡ x → + ∞ g ( x ) = 0 \begin{aligned} &(1)F(A)=\int_a^Af(x)dx在[a,+\infty)有界\\ &(2)g(x)在[a,+\infty)单调,且\lim_{x\to+\infty}g(x)=0 \end{aligned} (1)F(A)=aAf(x)dx[a,+)有界(2)g(x)[a,+)单调,x+limg(x)=0

    ∫ a + ∞ f ( x ) g ( x ) d x \int_a^{+\infty}f(x)g(x)dx a+f(x)g(x)dx收敛。

  19. A b e l Abel Abel判别法

    若区间 [ a , + ∞ ) [a,+\infty) [a,+)上定义的函数 f ( x ) , g ( x ) f(x),g(x) f(x),g(x)满足

    ( 1 ) 无穷级数 ∫ a + ∞ f ( x ) d x 收敛 ( 2 ) g ( x ) 在 [ a , + ∞ ) 单调有界 \begin{aligned} &(1)无穷级数\int_a^{+\infty}f(x)dx收敛\\ &(2)g(x)在[a,+\infty)单调有界 \end{aligned} (1)无穷级数a+f(x)dx收敛(2)g(x)[a,+)单调有界

    ∫ a + ∞ f ( x ) g ( x ) d x \int_a^{+\infty}f(x)g(x)dx a+f(x)g(x)dx收敛。

  20. 瑕积分

    a a a为函数 f ( x ) f(x) f(x)的暇点,则

    ∫ a b f ( x ) d x = lim ⁡ η → 0 + ∫ a + η b f ( x ) d x \int_a^bf(x)dx=\lim_{\eta\to0^+}\int_{a+\eta}^bf(x)dx abf(x)dx=η0+lima+ηbf(x)dx

    瑕积分敛散性判别法与无穷积分判别法类似。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值