7.1 计数原理

第七章 组合数学

全文均为手敲,如果发现有误,请于评论区交流讨论留言,作者会及时修改

7.1 计数原理

  1. 加法原理:分类计数;乘法原理:分步计数;减法原理:求补计数。

  2. 常用计数公式

    从 n 个元素中选取 k 个 , 满足以下条件 : ( 1 ) 可重排列 : n k ( 2 ) 无重排列 : P ( n , k ) = n ! ( n − k ) ! ( 3 ) 可重组合 : ( n + k − 1 k ) = ( n + k − 1 ) ! ( n − 1 ) ! k ! ( 4 ) 无重组合 : ( n k ) = n ! ( n − k ) ! k ! ( 5 ) 圆周排列 : 1 k P ( n , k ) ( 6 ) 项链排列 : 1 2 k P ( n , k ) \begin{aligned} &从n个元素中选取k个,满足以下条件:\\ &(1)可重排列:n^k\\ &(2)无重排列:P(n,k)=\frac{n!}{(n-k)!}\\ &(3)可重组合:\begin{pmatrix}n+k-1\\k\end{pmatrix}=\frac{(n+k-1)!}{(n-1)!k!}\\ &(4)无重组合:\begin{pmatrix}n\\k\end{pmatrix}=\frac{n!}{(n-k)!k!}\\ &(5)圆周排列:\frac 1kP(n,k)\\ &(6)项链排列:\frac 1{2k}P(n,k)\\ \end{aligned} n个元素中选取k,满足以下条件:(1)可重排列:nk(2)无重排列:P(n,k)=(nk)!n!(3)可重组合:(n+k1k)=(n1)!k!(n+k1)!(4)无重组合:(nk)=(nk)!k!n!(5)圆周排列:k1P(n,k)(6)项链排列:2k1P(n,k)

  3. 不定方程正整数解的个数

    x 1 + x 2 + ⋯ + x k = n 的正整数解个数为 ( n − 1 k − 1 ) x_1+x_2+\cdots+x_k=n的正整数解个数为\begin{pmatrix}n-1\\k-1\end{pmatrix} x1+x2++xk=n的正整数解个数为(n1k1)

    若更改为求非负整数解,则通过换元即可求得 ( n + k − 1 k − 1 ) \begin{pmatrix}n+k-1\\k-1\end{pmatrix} (n+k1k1)

  4. 有限多重集排列

    对于种类数为 k 的 n 个元素 , 每个种类分别有 n k 个元素 , 其排列数为 n ! n 1 ! ⋯ n k ! 对于种类数为k的n个元素,每个种类分别有n_k个元素,其排列数为\frac{n!}{n_1!\cdots n_k!} 对于种类数为kn个元素,每个种类分别有nk个元素,其排列数为n1!nk!n!

  5. 不相邻组合

    在 { 1 , 2 , ⋯   , n } 中选择 k 个不相邻的数 , 方案数为 ( n − k + 1 k ) 在\{1,2,\cdots,n\}中选择k个不相邻的数,方案数为\begin{pmatrix}n-k+1\\k\end{pmatrix} {1,2,,n}中选择k个不相邻的数,方案数为(nk+1k)

    通过构造双射转化为 { a 1 , ⋯   , a k − ( k − 1 ) } ⊂ { 1 , ⋯   , n − k + 1 } \{a_1,\cdots,a_k-(k-1)\}\sub\{1,\cdots,n-k+1\} {a1,,ak(k1)}{1,,nk+1}的无重组合

  6. 有限多重组合

    对于种类数为 k 的 n 个元素 , 每个种类分别有 n k 个元素 , 其任意数目的组合数为 ( n 1 + 1 ) ⋯ ( n k + 1 ) 对于种类数为k的n个元素,每个种类分别有n_k个元素,其任意数目的组合数为(n_1+1)\cdots(n_k+1) 对于种类数为kn个元素,每个种类分别有nk个元素,其任意数目的组合数为(n1+1)(nk+1)

  7. 常用组合恒等式

    ( 1 ) ( n k ) = ( n − 1 k ) + ( n − 1 k − 1 ) ( 2 ) k ( n k ) = n ( n − 1 k − 1 ) ( 3 ) ( n k ) ( k r ) = ( n r ) ( n − r k − r ) ( 4 ) ( m + n k ) = ∑ i = 0 k ( m i ) ( n k − i ) ( 5 ) ( m + n m ) = ∑ i = 0 m ( m i ) ( n i ) ( 6 ) ( n + 1 k + 1 ) = ∑ i = k n ( i k ) ( 7 ) ( 2 n n ) = ∑ i = 0 n ( n i ) 2 ( 8 ) 2 n = ∑ i = 0 n ( n i ) \begin{aligned} &(1)\begin{pmatrix}n\\k\end{pmatrix}=\begin{pmatrix}n-1\\k\end{pmatrix}+\begin{pmatrix}n-1\\k-1\end{pmatrix}\\ &(2)k\begin{pmatrix}n\\k\end{pmatrix}=n\begin{pmatrix}n-1\\k-1\end{pmatrix}\\ &(3)\begin{pmatrix}n\\k\end{pmatrix}\begin{pmatrix}k\\r\end{pmatrix}=\begin{pmatrix}n\\r\end{pmatrix}\begin{pmatrix}n-r\\k-r\end{pmatrix}\\ &(4)\begin{pmatrix}m+n\\k\end{pmatrix}=\sum_{i=0}^k\begin{pmatrix}m\\i\end{pmatrix}\begin{pmatrix}n\\k-i\end{pmatrix}\\ &(5)\begin{pmatrix}m+n\\m\end{pmatrix}=\sum_{i=0}^m\begin{pmatrix}m\\i\end{pmatrix}\begin{pmatrix}n\\i\end{pmatrix}\\ &(6)\begin{pmatrix}n+1\\k+1\end{pmatrix}=\sum_{i=k}^n\begin{pmatrix}i\\k\end{pmatrix}\\ &(7)\begin{pmatrix}2n\\n\end{pmatrix}=\sum_{i=0}^n\begin{pmatrix}n\\i\end{pmatrix}^2\\ &(8)2^n=\sum_{i=0}^n\begin{pmatrix}n\\i\end{pmatrix} \end{aligned} (1)(nk)=(n1k)+(n1k1)(2)k(nk)=n(n1k1)(3)(nk)(kr)=(nr)(nrkr)(4)(m+nk)=i=0k(mi)(nki)(5)(m+nm)=i=0m(mi)(ni)(6)(n+1k+1)=i=kn(ik)(7)(2nn)=i=0n(ni)2(8)2n=i=0n(ni)

  8. 排列生成算法

    递归生成算法、邻位对换算法、逆序生成算法

    逆序数 b 1 b 2 ⋯ b n b_1b_2\cdots b_n b1b2bn,其中 b k b_k bk表示比 k k k大但在 k k k前面的数字的个数

  9. 组合生成算法

    二进制算法、反射 G r a y Gray Gray

    二进制算法:用二进制数 a n − 1 ⋯ a 1 a 0 ‾ \overline{a_{n-1}\cdots a_1a_0} an1a1a0表示 { x n − 1 , ⋯   , x 1 , x 0 } \{x_{n-1},\cdots,x_1,x_0\} {xn1,,x1,x0}中的组合,第 k k k个组合即为 k k k的二进制记数所对应的集合

  10. r r r子集生成算法

    r r r子集的字典序:若 A ∪ B / A ∩ B A\cup B/A\cap B AB/AB的最小整数属于 A A A,则称 A A A先于 B B B

    12 ⋯ r 12\cdots r 12r开始,依次列出直接后继,即可生成所有 r r r子集

  11. 二项式定理

    ( x + y ) n = ∑ k = 0 n ( n k ) x n − k y k (x+y)^n=\sum_{k=0}^n\begin{pmatrix}n\\k\end{pmatrix}x^{n-k}y^k (x+y)n=k=0n(nk)xnkyk

  12. 链与反链

    设集合 S S S含有 n n n个元素

    T ⊂ ρ ( S ) T\sub\rho(S) Tρ(S) S S S上的一个反链,则 ∀ A , B ∈ T , ( A ⊈ B ∧ B ⊈ A ) \forall A,B\in T,(A\nsubseteq B\wedge B\nsubseteq A) A,BT,(ABBA)

    最大反链含有 ( n ⌊ n / 2 ⌋ ) \begin{pmatrix}n\\\lfloor n/2\rfloor\end{pmatrix} (nn/2)个子集,且各子集元素个数相同

    T ⊂ ρ ( S ) T\sub\rho(S) Tρ(S) S S S上的一个链,则 ∀ A , B ∈ T , ( A ⊂ B ∨ B ⊂ A ) \forall A,B\in T,(A\sub B\vee B\sub A) A,BT,(ABBA)

    最大链含有 n + 1 n+1 n+1个子集

    S S S上的一条反链最多只能包含 S S S的任意一条链中的一个子集

    S S S上的一条链最多只能包含 S S S的任意一条反链中的一个子集

  13. 多项式定理

    ( x 1 + ⋯ + x k ) n = ∑ n 1 + ⋯ + n k = n n ! n 1 ! ⋯ n k ! x 1 n 1 ⋯ x k n k (x_1+\cdots+x_k)^n=\sum_{n_1+\cdots+n_k=n}\frac{n!}{n_1!\cdots n_k!}x_1^{n_1}\cdots x_k^{n_k} (x1++xk)n=n1++nk=nn1!nk!n!x1n1xknk

  14. 牛顿二项式定理

    ( x + y ) α = ∑ n = 0 ∞ α ( α − 1 ) ⋯ ( α − n + 1 ) n ! x n y α − n (x+y)^\alpha=\sum_{n=0}^\infty\frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}x^ny^{\alpha-n} (x+y)α=n=0n!α(α1)(αn+1)xnyαn

  15. 负二项式定理

    1 ( 1 − x ) k = ∑ n = 0 ∞ ( n + k − 1 n ) x n , x ∈ ( − 1 , 1 ) \frac 1{(1-x)^k}=\sum_{n=0}^\infty \begin{pmatrix}n+k-1\\n\end{pmatrix}x^n,x\in(-1,1) (1x)k1=n=0(n+k1n)xn,x(1,1)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值