1.1 数列极限与函数极限

第一章 数学分析

全文均为手敲,如果发现有误,请于评论区交流讨论留言,作者会及时修改

1.1 数列极限与函数极限

  1. 数列极限为有界量

    lim ⁡ n → ∞ a n = a : ∀ ε > 0 , ∃ N ( ε ) ∈ N , s . t . ∀ n > N ( ε ) , ∣ a n − a ∣ < ε \lim_{n\to\infty}a_n=a:\forall\varepsilon>0,\exist N(\varepsilon)\in\N,s.t.\forall n>N(\varepsilon),|a_n-a|<\varepsilon nliman=a:ε>0,N(ε)N,s.t.∀n>N(ε),ana<ε

  2. 数列极限为无穷

    lim ⁡ n → ∞ a n = ∞ : ∀ M > 0 , ∃ N ( M ) ∈ N , s . t . ∀ n > N ( M ) , ∣ a n ∣ > M \lim_{n\to\infty}a_n=\infty:\forall M>0,\exist N(M)\in\N,s.t.\forall n>N(M),|a_n|>M nliman=:M>0,N(M)N,s.t.∀n>N(M),an>M

  3. 单调有界定理

    数列 { a n } \{a_n\} {an}极限存在,如果数列 { a n } \{a_n\} {an}单调递增有上界,或单调递减有下界。

  4. C a u c h y Cauchy Cauchy收敛原理

    数列 { a n } \{a_n\} {an}极限存在,当且仅当

    ∀ ε > 0 , ∃ N ( ε ) ∈ N , s . t . ∀ n , m > N ( ε ) , ∣ a m − a n ∣ < ε \forall\varepsilon>0,\exist N(\varepsilon)\in\N,s.t.\forall n,m>N(\varepsilon),|a_m-a_n|<\varepsilon ε>0,N(ε)N,s.t.∀n,m>N(ε),aman<ε

  5. S t o l z Stolz Stolz定理

    { a n } , { b n } \{a_n\},\{b_n\} {an},{bn}极限均为无穷,且 b n b_n bn严格递增趋于无穷,则

    lim ⁡ n → ∞ a n b n = lim ⁡ n → ∞ a n − a n − 1 b n − b n − 1 \lim_{n\to\infty}\frac{a_n}{b_n}=\lim_{n\to\infty}\frac{a_n-a_{n-1}}{b_n-b_{n-1}} nlimbnan=nlimbnbn1anan1

    { a n } , { b n } \{a_n\},\{b_n\} {an},{bn}极限均为零,且 b n b_n bn严格单调,则

    lim ⁡ n → ∞ a n b n = lim ⁡ n → ∞ a n − a n − 1 b n − b n − 1 \lim_{n\to\infty}\frac{a_n}{b_n}=\lim_{n\to\infty}\frac{a_n-a_{n-1}}{b_n-b_{n-1}} nlimbnan=nlimbnbn1anan1

  6. 夹逼定理

    a n ≤ b n ≤ c n a_n\le b_n\le c_n anbncn,则

    lim ⁡ n → ∞ a n = lim ⁡ n → ∞ c n = A ⇒ lim ⁡ n → ∞ b n = A \lim_{n\to\infty}a_n=\lim_{n\to\infty}c_n=A\Rightarrow\lim_{n\to\infty}b_n=A nliman=nlimcn=Anlimbn=A

  7. 平均收敛定理

    lim ⁡ n → ∞ a n = A ⇒ lim ⁡ n → ∞ a 1 + a 2 + ⋯ + a n n = A \lim_{n\to\infty}a_n=A\Rightarrow\lim_{n\to\infty}\frac{a_1+a_2+\cdots+a_n}n=A nliman=Anlimna1+a2++an=A

  8. 数列收敛则其所有子列均收敛

    若数列中某一子列发散,则数列发散,且

    lim ⁡ n → ∞ a n p + i = a ( i = 0 , 1 , ⋯   , p − 1 ) ⇒ lim ⁡ n → ∞ a n = a \lim_{n\to\infty}a_{np+i}=a(i=0,1,\cdots,p-1)\Rightarrow\lim_{n\to\infty}a_n=a nlimanp+i=a(i=0,1,,p1)nliman=a

  9. 定积分求解数列极限

    lim ⁡ n → ∞ ∑ k = 1 n 1 n f ( k n ) = ∫ 0 1 f ( x ) d x \lim_{n\to\infty}\sum_{k=1}^n\frac 1nf(\frac kn)=\int_0^1f(x)dx nlimk=1nn1f(nk)=01f(x)dx

  10. 其他实数相关定理

    确界存在定理,闭区间套定理,列紧性定理,有限覆盖定理

  11. 常用数列极限

    ( 1 ) lim ⁡ n → ∞ a n = lim ⁡ n → ∞ n n = 1 ( 2 ) lim ⁡ n → ∞ a n n ! = lim ⁡ n → ∞ n ! n n = 0 ( 3 ) e = lim ⁡ n → ∞ ( 1 + 1 n ) n = lim ⁡ n → ∞ ∑ k = 0 n 1 k ! \begin{aligned} &(1)\lim_{n\to\infty}\sqrt[n]a=\lim_{n\to\infty}\sqrt[n]n=1\\ &(2)\lim_{n\to\infty}\frac{a^n}{n!}=\lim_{n\to\infty}\frac{n!}{n^n}=0\\ &(3)e=\lim_{n\to\infty}(1+\frac 1n)^n=\lim_{n\to\infty}\sum_{k=0}^n\frac 1{k!} \end{aligned} (1)nlimna =nlimnn =1(2)nlimn!an=nlimnnn!=0(3)e=nlim(1+n1)n=nlimk=0nk!1

  12. 函数极限在实数点处为有界量

    lim ⁡ x → a f ( x ) = A : ∀ ε > 0 , ∃ δ ( ε ) > 0 , s . t . ∀ 0 < ∣ x − a ∣ < δ ( ε ) , ∣ f ( x ) − A ∣ < ε \lim_{x\to a}f(x)=A:\forall \varepsilon>0,\exist\delta(\varepsilon)>0,s.t.\forall 0<|x-a|<\delta(\varepsilon),|f(x)-A|<\varepsilon xalimf(x)=A:ε>0,δ(ε)>0,s.t.∀0<xa<δ(ε),f(x)A<ε

  13. 函数极限在实数点处为无穷

    lim ⁡ x → a f ( x ) = ∞ : ∀ M > 0 , ∃ δ ( M ) > 0 , s . t . ∀ 0 < ∣ x − a ∣ < δ ( M ) , ∣ f ( x ) ∣ > M \lim_{x\to a}f(x)=\infty:\forall M>0,\exist\delta(M)>0,s.t.\forall 0<|x-a|<\delta(M),|f(x)|>M xalimf(x)=:M>0,δ(M)>0,s.t.∀0<xa<δ(M),f(x)>M

  14. 函数极限在为无穷处为有界量

    lim ⁡ x → ∞ f ( x ) = A : ∀ ε > 0 , ∃ X ( ε ) > 0 , s . t . ∀ ∣ x ∣ > X ( ε ) , ∣ f ( x ) − A ∣ < ε \lim_{x\to \infty}f(x)=A:\forall \varepsilon>0,\exist X(\varepsilon)>0,s.t.\forall |x|>X(\varepsilon),|f(x)-A|<\varepsilon xlimf(x)=A:ε>0,X(ε)>0,s.t.∀∣x>X(ε),f(x)A<ε

  15. 函数极限在无穷处为无穷

    lim ⁡ x → ∞ f ( x ) = ∞ : ∀ M > 0 , ∃ X ( M ) > 0 , s . t . ∀ ∣ x ∣ > X ( M ) , ∣ f ( x ) ∣ > M \lim_{x\to \infty}f(x)=\infty:\forall M>0,\exist X(M)>0,s.t.\forall |x|>X(M),|f(x)|>M xlimf(x)=:M>0,X(M)>0,s.t.∀∣x>X(M),f(x)>M

  16. 函数的连续性

    f ( x ) 在 x 0 处连续 : ∀ ε > 0 , ∃ δ ( ε ) > 0 , s . t . ∀ ∣ x − x 0 ∣ < δ ( ε ) , ∣ f ( x ) − f ( x 0 ) ∣ < ε f(x)在x_0处连续:\forall \varepsilon>0,\exist \delta(\varepsilon)>0,s.t.\forall|x-x_0|<\delta(\varepsilon),|f(x)-f(x_0)|<\varepsilon f(x)x0处连续:ε>0,δ(ε)>0,s.t.∀∣xx0<δ(ε),f(x)f(x0)<ε

    更一般地

    f ( x ) 在 x 0 处连续 : lim ⁡ x → x 0 f ( x ) = f ( x 0 ) f(x)在x_0处连续:\lim_{x\to x_0}f(x)=f(x_0) f(x)x0处连续:xx0limf(x)=f(x0)

  17. 海涅定理

    若 lim ⁡ n → ∞ a n = a , 则 lim ⁡ x → a f ( x ) = lim ⁡ n → ∞ f ( a n ) 若\lim_{n\to\infty}a_n=a,则\lim_{x\to a}f(x)=\lim_{n\to \infty}f(a_n) nliman=a,xalimf(x)=nlimf(an)

  18. 无穷小与有界

    ( 1 ) 无穷小 : f ( x 0 ) = o ( g ( x 0 ) ) ⇔ lim ⁡ x → x 0 f ( x ) g ( x ) = 0 ( 2 ) 有界 : f ( x ) = O ( g ( x ) ) ⇔ ∃ M > 0 , s . t . ∣ f ( x ) g ( x ) ∣ ≤ M \begin{aligned} &(1)无穷小:f(x_0)=o(g(x_0))\Leftrightarrow\lim_{x\to x_0}\frac{f(x)}{g(x)}=0\\ &(2)有界:f(x)=O(g(x))\Leftrightarrow\exist M>0,s.t.|\frac{f(x)}{g(x)}|\le M \end{aligned} (1)无穷小:f(x0)=o(g(x0))xx0limg(x)f(x)=0(2)有界:f(x)=O(g(x))M>0,s.t.∣g(x)f(x)M

  19. 一致连续

    函数 f ( x ) f(x) f(x)在定义域 I I I上一致连续,定义为

    ∀ ε > 0 , ∃ δ > 0 , s . t . ∀ x ′ , x ′ ′ ∈ I , ∣ x ′ − x ′ ′ ∣ < δ ⇒ ∣ f ( x ′ ) − f ( x ′ ′ ) ∣ < ε \forall\varepsilon>0,\exist\delta>0,s.t.\forall x',x''\in I,|x'-x''|<\delta\Rightarrow|f(x')-f(x'')|<\varepsilon ε>0,δ>0,s.t.∀x,x′′I,xx′′<δf(x)f(x′′)<ε

  20. 间断点类型

    第一类间断点

    ( 1 ) 可去间断点 : lim ⁡ x → x 0 − f ( x ) = lim ⁡ x → x 0 + f ( x ) ≠ f ( x 0 ) ( 2 ) 跳跃间断点 : lim ⁡ x → x 0 − f ( x ) ≠ lim ⁡ x → x 0 + f ( x ) \begin{aligned} &(1)可去间断点:\lim_{x\to x_0^-}f(x)=\lim_{x\to x_0^+}f(x)\ne f(x_0)\\ &(2)跳跃间断点:\lim_{x\to x_0^-}f(x)\ne\lim_{x\to x_0^+}f(x) \end{aligned} (1)可去间断点:xx0limf(x)=xx0+limf(x)=f(x0)(2)跳跃间断点:xx0limf(x)=xx0+limf(x)

    第二类间断点: f ( x 0 − ) f(x_0^-) f(x0) f ( x 0 + ) f(x_0^+) f(x0+)至少一个不存在,例如无穷间断点和振荡间断点。

  21. 连续函数的最值定理

    连续函数在闭区间上必定能取到最大值和最小值。

  22. 连续函数的零点存在定理

    若 f ( x ) ∈ C ( a , b ) , f ( a ) f ( b ) < 0 , 则 ∃ ξ ∈ ( a , b ) , f ( ξ ) = 0 若f(x)\in C(a,b),f(a)f(b)<0,则\exist\xi\in(a,b),f(\xi)=0 f(x)C(a,b),f(a)f(b)<0,ξ(a,b),f(ξ)=0

  23. 连续函数的介值定理

    若 f ( x ) ∈ C ( a , b ) , [ f ( a ) − A ] [ f ( b ) − A ] < 0 , 则 ∃ ξ ∈ ( a , b ) , f ( ξ ) = A 若f(x)\in C(a,b),[f(a)-A][f(b)-A]<0,则\exist\xi\in(a,b),f(\xi)=A f(x)C(a,b),[f(a)A][f(b)A]<0,ξ(a,b),f(ξ)=A

  24. 常用等价无穷小和极限运算

    ( 1 ) x ∼ sin ⁡ x ∼ tan ⁡ x ∼ arcsin ⁡ x ∼ arctan ⁡ x ∼ ln ⁡ ( x + 1 ) ∼ e x − 1 ( 2 ) x 2 2 ∼ 1 − cos ⁡ x ∼ x − ln ⁡ ( 1 + x ) ∼ e x − 1 − x ( 3 ) ( 1 + x ) α − 1 ∼ α x ( 4 ) lim ⁡ x → x 0 u ( x ) v ( x ) = exp ⁡ { lim ⁡ x → x 0 ( v ( x ) ln ⁡ u ( x ) ) } = exp ⁡ { lim ⁡ x → x 0 v ( x ) ( u ( x ) − 1 ) } ( 5 ) e x + f ( x ) − e f ( x ) = e f ( x ) ( e x − 1 ) ∼ x e f ( x ) \begin{aligned} &(1)x\sim \sin x\sim\tan x\sim\arcsin x\sim\arctan x\sim\ln(x+1)\sim e^x-1\\ &(2)\frac{x^2}2\sim 1-\cos x\sim x-\ln(1+x)\sim e^x-1-x\\ &(3)(1+x)^\alpha-1\sim\alpha x\\ &(4)\lim_{x\to x_0}u(x)^{v(x)}=\exp\{\lim_{x\to x_0}(v(x)\ln u(x))\}=\exp\{\lim_{x\to x_0}v(x)(u(x)-1)\}\\ &(5)e^{x+f(x)}-e^{f(x)}=e^{f(x)}(e^x-1)\sim xe^{f(x)} \end{aligned} (1)xsinxtanxarcsinxarctanxln(x+1)ex1(2)2x21cosxxln(1+x)ex1x(3)(1+x)α1αx(4)xx0limu(x)v(x)=exp{xx0lim(v(x)lnu(x))}=exp{xx0limv(x)(u(x)1)}(5)ex+f(x)ef(x)=ef(x)(ex1)xef(x)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值