1.6 数项级数与函数项级数

第一章 数学分析

全文均为手敲,如果发现有误,请于评论区交流讨论留言,作者会及时修改

1.6 数项级数与函数项级数

  1. 无穷级数收敛的必要条件

    若 ∑ n = 1 ∞ a n 收敛,则 lim ⁡ n → ∞ a n = 0 若\sum_{n=1}^\infty a_n收敛,则\lim_{n\to\infty}a_n=0 n=1an收敛,则nliman=0

  2. 正项级数收敛的充要条件

    正向级数 ∑ n = 1 ∞ a n ( a n ≥ 0 ) 收敛 ⇔ 部分和序列 { S n ∣ S n = ∑ k = 1 n a k } 有界 正向级数\sum_{n=1}^\infty a_n(a_n\ge0)收敛\Leftrightarrow部分和序列\{S_n|S_n=\sum_{k=1}^na_k\}有界 正向级数n=1an(an0)收敛部分和序列{SnSn=k=1nak}有界

  3. 正项级数的比较判别法

    ∃ N > 0 , n > N \exist N>0,n>N N>0,n>N时,满足 b n ≥ a n ≥ 0 b_n\ge a_n\ge0 bnan0,则

    ( 1 ) ∑ n = 1 ∞ a n 发散 ⇒ ∑ n = 1 ∞ b n 发散 ( 2 ) ∑ n = 1 ∞ b n 收敛 ⇒ ∑ n = 1 ∞ a n 收敛 (1)\sum_{n=1}^\infty a_n发散\Rightarrow\sum_{n=1}^\infty b_n发散\\ (2)\sum_{n=1}^\infty b_n收敛\Rightarrow\sum_{n=1}^\infty a_n收敛 (1)n=1an发散n=1bn发散(2)n=1bn收敛n=1an收敛

    ∃ N > 0 , n > N \exist N>0,n>N N>0,n>N时,满足 a n , b n ≥ 0 a_n,b_n\ge0 an,bn0,则比较判别法极限形式成立

    ( 1 ) 若 lim ⁡ n → ∞ b n a n ≥ q > 0 , 则 ∑ n = 1 ∞ a n 发散 ⇒ ∑ n = 1 ∞ b n 发散 ( 2 ) 若 lim ⁡ n → ∞ a n b n ≤ q < ∞ , 则 ∑ n = 1 ∞ b n 收敛 ⇒ ∑ n = 1 ∞ a n 收敛 \begin{aligned} &(1)若\lim_{n\to\infty}\frac{b_n}{a_n}\ge q>0,则 \sum_{n=1}^\infty a_n发散\Rightarrow\sum_{n=1}^\infty b_n发散\\ &(2)若\lim_{n\to\infty}\frac{a_n}{b_n}\le q<\infty,则\sum_{n=1}^\infty b_n收敛\Rightarrow\sum_{n=1}^\infty a_n收敛 \end{aligned} (1)nlimanbnq>0,n=1an发散n=1bn发散(2)nlimbnanq<,n=1bn收敛n=1an收敛

  4. 比较判别法常用参考级数

    ( 1 ) 等比级数 : ∑ n = 1 ∞ q n { ∣ q ∣ < 1 时收敛 ∣ q ∣ ≥ 1 时发散 ( 2 ) P 级数 : ∑ n = 1 ∞ 1 n p { p > 1 时收敛 p ≤ 1 时发散 ( 3 ) 广义 P 级数 : ∑ n = 2 ∞ 1 n ln ⁡ p n , ∑ n = 2 ∞ 1 n ln ⁡ n ln ⁡ ln ⁡ p n 等 , 收敛条件同上 \begin{aligned} &(1)等比级数:\sum_{n=1}^\infty q^n\begin{cases} |q|<1时收敛\\ |q|\ge 1时发散 \end{cases}\\ &(2)P级数:\sum_{n=1}^\infty \frac 1{n^p}\begin{cases} p>1时收敛\\ p\le 1时发散 \end{cases}\\ &(3)广义P级数:\sum_{n=2}^\infty \frac 1{n\ln^pn},\sum_{n=2}^\infty \frac 1{n\ln n\ln\ln^pn}等,收敛条件同上 \end{aligned} (1)等比级数:n=1qn{q<1时收敛q1时发散(2)P级数:n=1np1{p>1时收敛p1时发散(3)广义P级数:n=2nlnpn1,n=2nlnnlnlnpn1,收敛条件同上

  5. 正项级数的 C a u c h y Cauchy Cauchy判别法(根值判别法)

    记 q = lim ⁡ n → ∞ a n n , 则级数 ∑ n = 1 ∞ a n { 收敛 , q < 1 发散 , q > 1 判别法失效 , q = 1 若取 q ‾ = lim ⁡ n → ∞ ‾ a n n , 结论依然成立 \begin{aligned} &记q=\lim_{n\to\infty}\sqrt[n]{a_n},则级数\sum_{n=1}^\infty a_n\begin{cases} 收敛,q<1\\ 发散,q>1\\ 判别法失效,q=1 \end{cases}\\ &若取\overline{q}=\overline{\lim_{n\to\infty}}\sqrt[n]{a_n},结论依然成立 \end{aligned} q=nlimnan ,则级数n=1an 收敛,q<1发散,q>1判别法失效,q=1若取q=nlimnan ,结论依然成立

  6. 正项级数的 D ′ A l e m b e r t D'Alembert DAlembert判别法(比值判别法)

    记 q = lim ⁡ n → ∞ a n + 1 a n , 则级数 ∑ n = 1 ∞ a n { 收敛 , q < 1 发散 , q > 1 判别法失效 , q = 1 若取 q ‾ = lim ⁡ n → ∞ ‾ a n + 1 a n , 结论依然成立 \begin{aligned} &记q=\lim_{n\to\infty}\frac{a_{n+1}}{a_n},则级数\sum_{n=1}^\infty a_n\begin{cases} 收敛,q<1\\ 发散,q>1\\ 判别法失效,q=1 \end{cases}\\ &若取\overline{q}=\overline{\lim_{n\to\infty}}\frac{a_{n+1}}{a_n},结论依然成立 \end{aligned} q=nlimanan+1,则级数n=1an 收敛,q<1发散,q>1判别法失效,q=1若取q=nlimanan+1,结论依然成立

  7. 正项级数的 C a u c h y Cauchy Cauchy积分判别法

    x ≥ 1 , f ( x ) ≥ 0 x\ge1,f(x)\ge0 x1,f(x)0且单调递减,则

    无穷级数 ∑ n = 1 ∞ f ( n ) 与广义积分 ∫ 1 + ∞ f ( x ) d x 同敛散 无穷级数\sum_{n=1}^\infty f(n)与广义积分\int_1^{+\infty}f(x)dx同敛散 无穷级数n=1f(n)与广义积分1+f(x)dx同敛散

  8. 一般项级数的绝对收敛判别法

    ∑ n = 1 ∞ ∣ a n ∣ 收敛 ⇒ ∑ n = 1 ∞ a n 收敛 \sum_{n=1}^\infty |a_n|收敛\Rightarrow\sum_{n=1}^\infty a_n收敛 n=1an收敛n=1an收敛

  9. 交错级数的 L e i b n i z Leibniz Leibniz判别法

    定义交错级数 ∑ n = 1 ∞ a n = ∑ n = 1 ∞ ( − 1 ) n u n ( u n > 0 ) 定义交错级数\sum_{n=1}^\infty a_n=\sum_{n=1}^\infty (-1)^nu_n(u_n>0) 定义交错级数n=1an=n=1(1)nun(un>0)

    u n u_n un单调递减趋于零,则该交错级数称为 L e i b n i z Leibniz Leibniz级数,且收敛

  10. 一般项级数的 D i r i c h l e t Dirichlet Dirichlet判别法

    如果以下两个条件同时成立 : ( 1 ) 数列 { a n } 的部分和 { S n ∣ S n = ∑ k = 1 n a k } 有界 ( 2 ) 数列 { b n } 是单调数列,且 lim ⁡ n → ∞ b n = 0 那么级数 ∑ n = 1 ∞ a n b n 收敛 \begin{aligned} &如果以下两个条件同时成立:\\ &(1)数列\{a_n\}的部分和\{S_n|S_n=\sum_{k=1}^na_k\}有界\\ &(2)数列\{b_n\}是单调数列,且\lim_{n\to\infty}b_n=0\\ &那么级数\sum_{n=1}^\infty a_nb_n收敛 \end{aligned} 如果以下两个条件同时成立:(1)数列{an}的部分和{SnSn=k=1nak}有界(2)数列{bn}是单调数列,且nlimbn=0那么级数n=1anbn收敛

  11. 一般项级数的 A b e l Abel Abel判别法

    如果以下两个条件同时成立 : ( 1 ) 级数 ∑ n = 1 n a n 收敛 ( 2 ) 数列 { b n } 单调有界 那么级数 ∑ n = 1 ∞ a n b n 收敛 \begin{aligned} &如果以下两个条件同时成立:\\ &(1)级数\sum_{n=1}^na_n收敛\\ &(2)数列\{b_n\}单调有界\\ &那么级数\sum_{n=1}^\infty a_nb_n收敛 \end{aligned} 如果以下两个条件同时成立:(1)级数n=1nan收敛(2)数列{bn}单调有界那么级数n=1anbn收敛

  12. 幂级数的 A b e l Abel Abel定理

    对于幂级数 ∑ n = 0 ∞ a n x n 有以下两条结论成立 : ( 1 ) 若有某点 x 0 ≠ 0 使得 ∑ n = 0 ∞ a n x 0 n 收敛 , 则当 ∣ x ∣ < ∣ x 0 ∣ 时 , ∑ n = 0 ∞ a n x n 绝对收敛 ( 2 ) 若有某点 x 1 ≠ 0 使得 ∑ n = 0 ∞ a n x 1 n 发散 , 则当 ∣ x ∣ > ∣ x 1 ∣ 时 , ∑ n = 0 ∞ a n x n 发散 \begin{aligned} &对于幂级数\sum_{n=0}^\infty a_nx^n有以下两条结论成立:\\ &(1)若有某点x_0\neq 0使得\sum_{n=0}^\infty a_nx_0^n收敛,则当|x|<|x_0|时,\sum_{n=0}^\infty a_nx^n绝对收敛\\ &(2)若有某点x_1\neq 0使得\sum_{n=0}^\infty a_nx_1^n发散,则当|x|>|x_1|时,\sum_{n=0}^\infty a_nx^n发散 \end{aligned} 对于幂级数n=0anxn有以下两条结论成立:(1)若有某点x0=0使得n=0anx0n收敛,则当x<x0,n=0anxn绝对收敛(2)若有某点x1=0使得n=0anx1n发散,则当x>x1,n=0anxn发散

  13. 幂级数的收敛半径

    幂级数 ∑ n = 0 ∞ a n x n 的收敛半径为 : R = lim ⁡ n → ∞ ∣ a n a n + 1 ∣ 或 R = ( lim ⁡ n → ∞ ‾ ∣ a n ∣ n ) − 1 幂级数\sum_{n=0}^\infty a_nx^n的收敛半径为:R=\lim_{n\to\infty}\left|\frac{a_n}{a_{n+1}}\right|或R=\left(\overline{\lim_{n\to\infty}}\sqrt[n]{|a_n|}\right)^{-1} 幂级数n=0anxn的收敛半径为:R=nlim an+1an R=(nlimnan )1

    收敛域需要在 x ∈ { R , − R } x\in\{R,-R\} x{R,R}处单独讨论

  14. 幂级数的换序运算

    幂级数求导与求和换序

    ∑ n = 0 ∞ f ( x ) ( n + 1 ) x n = f ( x ) [ ∑ n = 0 ∞ x n + 1 ] ′ = f ( x ) ( x − 1 ) 2 \begin{aligned} &\sum_{n=0}^\infty f(x)(n+1)x^n\\ =&f(x)\left[\sum_{n=0}^\infty x^{n+1}\right]'\\ =&\frac{f(x)}{(x-1)^2}\\ \end{aligned} ==n=0f(x)(n+1)xnf(x)[n=0xn+1](x1)2f(x)

    幂级数积分与求和换序

    ∑ n = 0 ∞ f ( x ) x n + 1 n + 1 = f ( x ) ∫ 0 x [ ∑ n = 0 ∞ x n ] d x = − f ( x ) ln ⁡ ( 1 − x ) \begin{aligned} &\sum_{n=0}^\infty f(x)\frac{x^{n+1}}{n+1}\\ =&f(x)\int_0^x\left[\sum_{n=0}^\infty x^n\right]dx\\ =&-f(x)\ln(1-x) \end{aligned} ==n=0f(x)n+1xn+1f(x)0x[n=0xn]dxf(x)ln(1x)

  15. 函数展开成 T a y l o r Taylor Taylor级数

    f ( x ) = ∑ n = 0 ∞ f ( n ) ( x 0 ) n ! ( x − x 0 ) n f(x)=\sum_{n=0}^\infty \frac{f^{(n)}(x_0)}{n!}(x-x_0)^n f(x)=n=0n!f(n)(x0)(xx0)n

    特别地,当 x 0 = 0 x_0=0 x0=0时,上式称为 M a c l a u r i n Maclaurin Maclaurin级数

  16. 常用泰勒级数及其收敛域

    ( 1 ) sin ⁡ x = ∑ n = 0 ∞ ( − 1 ) n x 2 n + 1 ( 2 n + 1 ) ! , x ∈ ( − ∞ , + ∞ ) ( 2 ) cos ⁡ x = ∑ n = 0 ∞ ( − 1 ) n x 2 n ( 2 n ) ! , x ∈ ( − ∞ , + ∞ ) ( 3 ) e x = ∑ n = 0 ∞ x n n ! , x ∈ ( − ∞ , + ∞ ) ( 4 ) 1 1 − x = ∑ n = 0 ∞ x n , x ∈ ( − 1 , 1 ) ( 5 ) 1 1 + x = ∑ n = 0 ∞ ( − 1 ) n x n , x ∈ ( − 1 , 1 ) ( 6 ) 1 ( 1 − x ) k = ∑ n = 0 ∞ ( n + k − 1 n ) x n , x ∈ ( − 1 , 1 ) ( 7 ) ln ⁡ ( 1 + x ) = ∑ n = 0 ∞ ( − 1 ) n x n + 1 ( n + 1 ) , x ∈ ( − 1 , 1 ] ( 8 ) arctan ⁡ x = ∑ n = 0 ∞ ( − 1 ) n x 2 n + 1 2 n + 1 , x ∈ ( − 1 , 1 ) ( 9 ) 1 2 ( e x + e − x ) = ∑ n = 0 ∞ x 2 n ( 2 n ) ! , x ∈ ( − ∞ , + ∞ ) ( 10 ) ( 1 + x ) α = ∑ n = 0 ∞ α ( α − 1 ) ⋯ ( α − n + 1 ) n ! x n , x ∈ { ( − 1 , 1 ) , α ≤ − 1 ( − 1 , 1 ] , − 1 < α < 1 [ − 1 , 1 ] , α > 1 \begin{aligned} &(1)\sin x=\sum_{n=0}^\infty\frac{(-1)^nx^{2n+1}}{(2n+1)!},x\in(-\infty,+\infty)\\ &(2)\cos x=\sum_{n=0}^\infty\frac{(-1)^nx^{2n}}{(2n)!},x\in(-\infty,+\infty)\\ &(3)e^x=\sum_{n=0}^\infty\frac{x^n}{n!},x\in(-\infty,+\infty)\\ &(4)\frac 1{1-x}=\sum_{n=0}^\infty x^n,x\in(-1,1)\\ &(5)\frac 1{1+x}=\sum_{n=0}^\infty(-1)^nx^n,x\in(-1,1)\\ &(6)\frac 1{(1-x)^k}=\sum_{n=0}^\infty \begin{pmatrix}n+k-1\\n\end{pmatrix}x^n,x\in(-1,1)\\ &(7)\ln(1+x)=\sum_{n=0}^\infty\frac{(-1)^nx^{n+1}}{(n+1)},x\in(-1,1]\\ &(8)\arctan x=\sum_{n=0}^\infty \frac{(-1)^nx^{2n+1}}{2n+1},x\in(-1,1)\\ &(9)\frac 12(e^x+e^{-x})=\sum_{n=0}^\infty\frac{x^{2n}}{(2n)!},x\in(-\infty,+\infty)\\ &(10)(1+x)^\alpha=\sum_{n=0}^\infty\frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}x^n,x\in\begin{cases}(-1,1),\alpha\le-1\\ (-1,1],-1<\alpha<1\\ [-1,1],\alpha>1\end{cases} \end{aligned} (1)sinx=n=0(2n+1)!(1)nx2n+1,x(,+)(2)cosx=n=0(2n)!(1)nx2n,x(,+)(3)ex=n=0n!xn,x(,+)(4)1x1=n=0xn,x(1,1)(5)1+x1=n=0(1)nxn,x(1,1)(6)(1x)k1=n=0(n+k1n)xn,x(1,1)(7)ln(1+x)=n=0(n+1)(1)nxn+1,x(1,1](8)arctanx=n=02n+1(1)nx2n+1,x(1,1)(9)21(ex+ex)=n=0(2n)!x2n,x(,+)(10)(1+x)α=n=0n!α(α1)(αn+1)xn,x (1,1),α1(1,1],1<α<1[1,1],α>1

  17. 周期函数的 F o u r i e r Fourier Fourier级数

    周期为 2 π 2\pi 2π的函数可以展开为如下形式的 F o u r i e r Fourier Fourier级数

    f ( x ) = a 0 2 + ∑ n = 1 ∞ ( a n cos ⁡ n x + b n sin ⁡ n x ) f(x)=\frac{a_0}2+\sum_{n=1}^\infty\left(a_n\cos nx+b_n\sin nx\right) f(x)=2a0+n=1(ancosnx+bnsinnx)

    其中

    a n = 1 π ∫ − π π f ( x ) cos ⁡ n x d x , n = 0 , 1 , 2 ⋯ b n = 1 π ∫ − π π f ( x ) sin ⁡ n x d x , n = 1 , 2 , 3 ⋯ \begin{aligned} &a_n=\frac 1\pi\int_{-\pi}^{\pi}f(x)\cos nxdx,n=0,1,2\cdots\\ &b_n=\frac 1\pi\int_{-\pi}^{\pi}f(x)\sin nxdx,n=1,2,3\cdots \end{aligned} an=π1ππf(x)cosnxdx,n=0,1,2bn=π1ππf(x)sinnxdx,n=1,2,3

    周期函数为 2 l 2l 2l的函数可以展开为如下形式的 F o u r i e r Fourier Fourier级数

    f ( x ) = a 0 2 + ∑ n = 1 ∞ ( a n cos ⁡ n π x l + b n sin ⁡ n π x l ) f(x)=\frac{a_0}2+\sum_{n=1}^\infty\left(a_n\cos\frac{n\pi x}l+b_n\sin\frac{n\pi x}l\right) f(x)=2a0+n=1(ancoslx+bnsinlx)

    其中

    a n = 1 l ∫ − l l f ( x ) cos ⁡ n π x l d x , n = 0 , 1 , 2 ⋯ b n = 1 l ∫ − l l f ( x ) sin ⁡ n π x l d x , n = 1 , 2 , 3 ⋯ \begin{aligned} &a_n=\frac 1l\int_{-l}^{l}f(x)\cos\frac{n\pi x}ldx,n=0,1,2\cdots\\ &b_n=\frac 1l\int_{-l}^{l}f(x)\sin\frac{n\pi x}ldx,n=1,2,3\cdots \end{aligned} an=l1llf(x)coslxdx,n=0,1,2bn=l1llf(x)sinlxdx,n=1,2,3

  18. F o u r i e r Fourier Fourier级数的 D i r i c h l e t Dirichlet Dirichlet收敛定理

    对于周期为 2 π 2\pi 2π的周期函数 f ( x ) f(x) f(x),展开为 F o u r i e r Fourier Fourier级数时,有

    a 0 2 + ∑ n = 1 ∞ ( a n cos ⁡ n x + b n sin ⁡ n x ) = lim ⁡ t → 0 + f ( x + t ) + f ( x − t ) 2 \frac{a_0}2+\sum_{n=1}^\infty\left(a_n\cos nx+b_n\sin nx\right)=\lim_{t\to0^+}\frac{f(x+t)+f(x-t)}2 2a0+n=1(ancosnx+bnsinnx)=t0+lim2f(x+t)+f(xt)

  19. 奇函数、偶函数、非周期函数进行 F o u r i e r Fourier Fourier展开

    需要将非周期函数 f ( x ) f(x) f(x)周期延拓为 F ( x ) F(x) F(x):可进行奇延拓或偶延拓,其中奇延拓需保证 F ( 0 ) = 0 F(0)=0 F(0)=0

    奇函数的 F o u r i e r Fourier Fourier级数只含正弦部分,又称正弦级数,以周期为 2 π 2\pi 2π的函数为例,有

    f ( x ) = ∑ n = 1 ∞ b n sin ⁡ n x , b n = 2 π ∫ 0 π f ( x ) sin ⁡ n x d x f(x)=\sum_{n=1}^\infty b_n\sin nx,b_n=\frac 2\pi\int_0^\pi f(x)\sin nxdx f(x)=n=1bnsinnx,bn=π20πf(x)sinnxdx

    偶函数的 F o u r i e r Fourier Fourier级数只含余弦部分,又称余弦级数,以周期为 2 π 2\pi 2π的函数为例,有

    f ( x ) = a 0 2 + ∑ n = 1 ∞ a n cos ⁡ n x , a n = 2 π ∫ 0 π f ( x ) cos ⁡ n x d x f(x)=\frac{a_0}2+\sum_{n=1}^\infty a_n\cos nx,a_n=\frac 2\pi\int_0^\pi f(x)\cos nxdx f(x)=2a0+n=1ancosnx,an=π20πf(x)cosnxdx

  20. F o u r i e r Fourier Fourier级数相关的数项级数

    ( 1 ) ∑ n = 1 ∞ 1 n 2 = π 2 6 ( 2 ) ∑ n = 1 ∞ ( − 1 ) 2 n 2 = π 2 12 ( 3 ) ∑ n = 0 ∞ 1 ( 2 n + 1 ) 2 = π 2 8 \begin{aligned} &(1)\sum_{n=1}^\infty\frac 1{n^2}=\frac{\pi^2}6\\ &(2)\sum_{n=1}^\infty\frac{(-1)^2}{n^2}=\frac{\pi^2}{12}\\ &(3)\sum_{n=0}^\infty\frac 1{(2n+1)^2}=\frac{\pi^2}8\\ \end{aligned} (1)n=1n21=6π2(2)n=1n2(1)2=12π2(3)n=0(2n+1)21=8π2

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值