5.2 二元关系

第五章 集合论

全文均为手敲,如果发现有误,请于评论区交流讨论留言,作者会及时修改

5.2 二元关系

定义与性质
关系定义
  • 关系:我们知道关系就是两个事物之间的联系,抽象一下,具体是啥关系不重要,哪两个东西在一起很重要。所以我们定义如下:
    • 若 集 合 R ⊆ X × Y , 则 称 R 是 X 到 Y 的 二 元 关 系 , 简 称 关 系 若集合R \subseteq X\times Y ,则称R是X到Y的二元关系,简称关系 RX×YRXY
    • 若R是X到X的关系,也称R是X上的二元关系。
    • 我 们 可 以 把 < x , y > ∈ R 记 作 x R y 我们可以把< x , y >\in R 记作xRy <x,y>RxRy
    • < x , y > ∉ R 记 作 x R ˉ y < x , y >\notin R记作x\bar Ry <x,y>/RxRˉy
  • 特殊情况:
    • R = ϕ , 称 为 空 关 系 R = \phi,称为空关系 R=ϕ
    • R = U X ( U X = X × X ) , 称 为 全 域 关 系 R = U_X(U_X = X\times X),称为全域关系 R=UX(UX=X×X)
    • R = I X ( I X = { < x , x > ∣ x ∈ X } ) , 称 为 恒 等 关 系 R = I_X(I_X = \{< x , x >| x \in X \}),称为恒等关系 R=IX(IX={<x,x>xX})
  • 定义域(domain)/值域(range):
    • d o m ( R ) = { x ∈ X ∣ ∃ y ∈ Y : < x , y > ∈ R } , d o m ( R ) ⊆ X dom(R) = \{x \in X | \exists y \in Y : < x , y > \in R \}, dom(R) \subseteq X dom(R)={xXyY:<x,y>R},dom(R)X
    • r a n ( R ) = { y ∈ Y ∣ ∃ x ∈ X : < x , y > ∈ R } , r a n ( R ) ⊆ Y ran(R) = \{y \in Y | \exists x \in X : < x,y> \in R \}, ran(R) \subseteq Y ran(R)={yYxX:<x,y>R},ran(R)Y
    • 后面这种类似的东西我都只写一个,另一个类比
  • 矩阵/关系图表示:
    • 用矩阵和图的方式来表示一个关系(DS课学过图和矩阵表示方法,很像)
关系性质
  • 五个性质:记住他们的定义、矩阵的特征、图的特征

  • 这些性质的前提是R为非空集合X上的关系

  • 定义

    • 自反: R 满 足 ∀ x ( x ∈ X → < x , x > ∈ R ) R满足 \forall x (x \in X \rightarrow < x,x> \in R) Rx(xX<x,x>R)
    • 反自反: R 满 足 ∀ x ( x ∈ X → < x , x > ∉ R ) R满足 \forall x (x \in X \rightarrow < x,x> \notin R) Rx(xX<x,x>/R)
    • 对称: R 满 足 ∀ x ∀ y ( x ∈ X ∧ y ∈ X ∧ x R y → y R x ) R满足 \forall x \forall y (x \in X \wedge y \in X \wedge xRy \rightarrow yRx) Rxy(xXyXxRyyRx)
    • 反对称: R 满 足 ∀ x ∀ y ( x ∈ X ∧ y ∈ X ∧ x R y ∧ x ≠ y → y R ˉ x ) R满足 \forall x \forall y (x \in X \wedge y \in X \wedge xRy \wedge x \neq y \rightarrow y \bar Rx) Rxy(xXyXxRyx=yyRˉx)
    • 传递: R 满 足 ∀ x ∀ y ∀ z ( x ∈ X ∧ y ∈ X ∧ z ∈ X ∧ x R y ∧ y R z → x R z ) R满足 \forall x \forall y \forall z(x \in X \wedge y \in X \wedge z \in X \wedge xRy \wedge yRz \rightarrow xRz) Rxyz(xXyXzXxRyyRzxRz)
    • 例:恒等关系是自反、对称、传递的;“<”关系是反自反、反对称、传递的。
  • 矩阵与图的特征

    • 见表格:
    R R R自反反自反对称反对称传递
    M R M_R MR对角线全1对角线全0对称矩阵 a i j ⋅ a j i = 0 a_{ij}\cdot a_{ji}=0 aijaji=0 a i k ⋅ a k j = 1 a_{ik}\cdot a_{kj}=1 aikakj=1,则 a i j = 1 a_{ij}=1 aij=1
    G R G_R GR所有节点都有自圈所有节点都无自圈节点间有向边都成对出现节点间无成对出现的有向边处处有捷径
运算
  • 关于 ∪ 、 ∩ 、 − 、 ∼ 、 ⊕ \cup、\cap、-、\sim、\oplus 等运算,关系就是二元序偶集的一种,可以照搬运算。
  • 有三大新运算:复合、逆(注意与取反区分)、闭包
复合
  • 定义:R为X到Y的关系,S是Y到Z的关系
    • 则 R ⋅ S = { < x , z > ∣ ∃ y ∈ Y : x R y ∧ y S z } 则R\cdot S = \{< x,z> | \exists y \in Y: xRy \wedge ySz \} RS={<x,z>yY:xRyySz}
    • 运算不满足交换律,但满足结合律。
  • 复合的矩阵表示就是俩矩阵相乘(),细想一下逻辑完全符合
  • 复合运算的定义域与值域讨论:
    • 我们把关系作用于集合,定义为:
      • R 是 X 到 Y 的 集 合 , R [ A ] = { y ∈ Y ∣ ∃ x ∈ A : < x , y > ∈ R } , R − 1 同 理 R是X到Y的集合,R[A] = \{y \in Y | \exists x \in A: < x,y> \in R \}, R^{-1}同理 RXYR[A]={yYxA:<x,y>R},R1
    • 所以我们易证:
      • d o m ( R ⋅ S ) = R − 1 [ d o m S ] , r a n ( R ⋅ S ) = R [ r a n R ] dom(R \cdot S) = R^{-1}[domS], ran(R \cdot S) = R[ranR] dom(RS)=R1[domS],ran(RS)=R[ranR]
逆关系
  • 定义:记作 R − 1 R^{-1} R1
    • 关系中的每个有序偶的第一元与第二元对换
    • 在矩阵上表现为原矩阵的转置 M R T M_R^T MRT
    • 关系图上表示为每一条边反向
  • 注意与 ∼ R \sim R R区分
关系五大性质对应的判断条件
  • R R R A A A上的二元关系
    • R 是 自 反 的    ⟺    I A ⊆ R R是自反的 \iff I_A \subseteq R RIAR
    • R 是 反 自 反 的    ⟺    I A ⊈ R ( I A ∩ R = ϕ ) R是反自反的 \iff I_A \nsubseteq R (I_A \cap R = \phi) RIAR(IAR=ϕ)
    • R 是 对 称 的    ⟺    R − 1 = R R是对称的 \iff R^{-1} = R RR1=R
    • R 是 反 对 称 的    ⟺    R − 1 ∩ R ⊆ I A R是反对称的 \iff R^{-1} \cap R \subseteq I_A RR1RIA
    • R 是 传 递 的    ⟺    R ⋅ R ⊆ R R是传递的 \iff R \cdot R \subseteq R RRRR
闭包
  • 自反,对称,传递关系都是极大的条件,也就是说,任何一个关系,我都可以通过增加元素,使得其满足这三个性质。而反自反与反对称不行,所以诞生了闭包的运算,也就是通过添加元素,使得关系满足这三个性质形成的最小关系。
  • 定义:关系R’为R的自反(对称、传递)闭包(它们都为A上的关系),当且仅当满足:
    • R ′ 是 自 反 的 R'是自反的 R
    • R ⊆ R ′ R \subseteq R' RR
    • 对于 A A A上的任何一个自反(对称、传递)的关系 R ′ ′ , R ⊆ R ′ ′ → R ′ ⊆ R ′ ′ R'',R \subseteq R'' \rightarrow R' \subseteq R'' RRRRR(可以看作是一种极小化,这一条称为闭包的最小性)
    • R R R的自反、对称、传递闭包分别记作: r ( R ) , s ( R ) , t ( R ) r(R),s(R),t(R) r(R),s(R),t(R)
  • 由定义可知:
    • R R R是自反(对称、传递)的,当且仅当 R = r / s / t ( R ) R = r/s/t(R) R=r/s/t(R)
  • R R R的三大闭包的存在性与唯一性证明:
    • r ( R ) = R ∪ I A r(R) = R \cup I_A r(R)=RIA
    • s ( R ) = R ∪ R − 1 s(R) = R \cup R^{-1} s(R)=RR1
    • t ( R ) = ∪ n = 1 ∞ R n t(R) = \cup_{n=1}^\infty R^n t(R)=n=1Rn
    • 证明都非常的有意思, s ( R ) s(R) s(R)的证明直接通过定义,r/t的证明可以证明等式两边相互包含。
  • 传递闭包缩小定理:对于有限集A,A中有n个元素,则 t ( R ) = ∪ i = 0 n R i t(R) = \cup_{i=0}^n R^i t(R)=i=0nRi
    • 可证: 对 于 任 意 k > 0 都 有 R n + k ⊆ ∪ i = 0 n R i 对于任意k > 0 都有R^{n+k} \subseteq \cup_{i=0}^n R^i k>0Rn+ki=0nRi
  • 性质:
    • 闭包运算不破坏包含序关系,即: 若 R 1 ⊆ R 2 , 则 r / s / t ( R 1 ) ⊆ r / s / t ( R 2 ) 若R_1 \subseteq R_2 ,则r/s/t(R_1) \subseteq r/s/t(R_2) R1R2r/s/t(R1)r/s/t(R2)
    • 闭包运算也基本不破坏R本身的三大性质,除 s ( R ) s(R) s(R)会破坏R的传递性(即 R R R传递, s ( R ) s(R) s(R)不一定传递,这是一大不对称因素)
    • 所以性质2导致s与t运算不可逆 ( s t ( R ) 不 一 定 = t s ( R ) 但 s t ( R ) ⊆ t s ( R ) ) (st(R) 不一定= ts(R) 但 st(R) \subseteq ts(R) ) (st(R)=ts(R)st(R)ts(R))
序关系
  • 序关系有偏序关系,严格偏序关系(拟序关系),全序关系,良序关系
序关系定义
  • 偏序:R满足自反,反对称,传递三个性质,则R是A上的偏序关系,用 < A , ≤ > < A , \leq > <A,>表示偏序结构
  • 严格偏序:是自反改为反自反的偏序,就是说一定要比出个高低。
    • 但我们发现由反自反与传递可以推出反对称(可以使用反证法,假设关系不是反对称,则一定能推出< x , x >的元素),所以我们定义只需反自反、传递就行。
    • 严格偏序和偏序有如下关系: < = ≤ − I A < = \leq - I_A <=IA
  • 全序:若 < A , ≤ > < A , \leq > <A,>是偏序结构
    • ∀ x , y ∈ A → x < = y ∨ y < = x , 则 称 < A , ≤ > 全 序 结 构 或 者 链 \forall x,y \in A \rightarrow x <= y \vee y <= x ,则称< A , \leq >全序结构或者链 x,yAx<=yy<=x,<A,>(也就是说任意两元素都是可比的)
覆盖与哈斯图
  • 由于序关系是传递的,所以我们能够简化关系图,即若x < y, y < z, 则我再图中只画出这两条线,因为x,z之间的关系显而易见,然后偏序关系中的自反关系在图中省略,即不画自圈,就得到了哈斯图。而我们要描述两个元素之间的关系,就需要看它们之间是否夹着不上不下的元素,没有的话这两个元素看上去在我们的序关系中是相邻的,我们称之为覆盖。
  • 覆盖: y 覆 盖 x ⇔ x < y ∧ ¬ ∃ z ( z ∈ A ∧ x < z ∧ z < y ) y覆盖x \Leftrightarrow x < y \wedge \neg \exists z(z \in A \wedge x < z \wedge z < y) yxx<y¬z(zAx<zz<y)
偏序结构中的特殊元素
  • 前提: < A , ≤ > 是 偏 序 结 构 , B ⊆ A < A, \leq>是偏序结构,B \subseteq A <A,>BA
    • 极大元: b 是 B 的 极 大 元 ⇔ b ∈ B ∧ ∀ x ( x ∈ B → x ≤ b ) b是B的极大元 \Leftrightarrow b \in B \wedge \forall x(x \in B \rightarrow x \leq b) bBbBx(xBxb)
    • 最大元: b 是 B 的 最 大 元 ⇔ b ∈ B ∧ ¬ ∃ x ( x ∈ B ∧ x ≤ b ) b是B的最大元 \Leftrightarrow b \in B \wedge \neg \exists x(x \in B \wedge x \leq b) bBbB¬x(xBxb)
  • 极大与最大的区别:极大是没比我大,最大是比啥都大,根源在于不是所有的元素之间都可比。
  • 极小与最小同理。
  • 上界: b 是 B 的 上 界 ⇔ b ∈ A ∧ ∀ x ( x ∈ B → x ≤ b ) b是B的上界 \Leftrightarrow b \in A \wedge \forall x(x \in B \rightarrow x \leq b) bBbAx(xBxb)
  • 最小上界: b 是 B 的 最 小 上 界 ⇔ b 是 B 的 上 界 ∧ ∀ x ( x 是 B 的 上 界 → b ≤ x ) b是B的最小上界 \Leftrightarrow b是B的上界 \wedge \forall x(x是B的上界 \rightarrow b \leq x) bBbBx(xBbx)
  • 下界与最大下界同理。
  • 一定要注意并不是所有元素之间都可以比较,所以可能上下界和最大最小元不存在
良序结构
  • 定义:若一个偏序结构的每个非空子集都有最小元,则该结构为良序结构。
  • 所以良序一定是全序,因为对于任意两个元素,我们都可以当作非空子集拎出来,然后它们俩必有一个最小元。
    • 但是全序并不一定是良序,因为可能存在一个无穷递降的序列,使得没有最小元。
    • 所以我们可证:良序 ⇔ \Leftrightarrow 没有无穷递降序列的全序。
  • 又:全序关系中,任何非空子集的极小元与最小元等价,所以也可以表述上互换。
等价关系
  • 等价关系满足:自反,对称,传递(模m同余的关系就是典型的等价关系)
  • 由于传递性,我能用等价关系确定一个集合,叫等价类。
    • A中与x有等价关系R的元素的集合,为x关于R的等价类,记作: [ x ] R [x]_R [x]R
    • [ x ] R = { y ∣ y ∈ A ∧ x R y } [x]_R = \{y | y \in A \wedge xRy \} [x]R={yyAxRy}
  • 性质:等价关系与等价类满足下列性质
    • [ x ] R = [ y ] R ⇔ x R y [x]_R = [y]_R \Leftrightarrow xRy [x]R=[y]RxRy(传递性证)
    • x , y ∈ A ∧ x R ˉ y → [ x ] R ∩ [ y ] R = ϕ x,y \in A\wedge x\bar Ry \rightarrow [x]_R \cap [y]_R = \phi x,yAxRˉy[x]R[y]R=ϕ(反证法)
    • ∪ x ∈ A [ x ] R = A \cup_{x \in A}[x]_R = A xA[x]R=A(全覆盖定理, x ∈ [ x ] R x \in [x]_R x[x]R可证)
  • 商集:A上关于R的所有等价类的集合,记作A/R
  • 划分: 对 于 A , 若 有 π ⊆ ρ ( A ) , 且 π 满 足 三 个 条 件 , 则 称 π 为 A 的 划 分 对于A,若有\pi \subseteq \rho(A), 且\pi 满足三个条件,则称\pi 为A的划分 Aπρ(A),ππA
    • ∀ S ∈ π , S ≠ ϕ \forall S \in \pi, S \neq \phi Sπ,S=ϕ
    • ∀ B , C ∈ π , 若 B ≠ C 则 B ∩ C = ϕ \forall B,C \in \pi, 若B \neq C 则B \cap C = \phi B,Cπ,B=CBC=ϕ
    • ∪ π = A \cup\pi=A π=A
    • π 中 元 素 为 划 分 块 , # π 称 作 \pi 中元素为划分块, \# \pi 称作 π#π
  • 由上我们可以知道A上的每个等价关系唯一确定的商集就是一个划分
  • 由 A 上 的 划 分 π 我 们 令 R π = { < x , y > ∣ ∃ S ∈ π ( x , y ∈ S ) } , 我 们 可 以 唯 一 确 定 一 个 等 价 关 系 R π , 且 A / R π = π 由A上的划分\pi 我们令R_\pi = \{< x,y> | \exists S \in \pi (x,y \in S) \},我们可以唯一确定一个等价关系R_\pi,且A/R_\pi = \pi AπRπ={<x,y>Sπ(x,yS)},RπA/Rπ=π
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值