5.4 自然数

第五章 集合论

全文均为手敲,如果发现有误,请于评论区交流讨论留言,作者会及时修改

5.4 自然数

自然数构造
  • 自然数依托于用集合论构造,各种性质用Peano公理推导,所以构造出的自然数需要满足Peano公理

  • 集合的后继: 对 于 集 合 A , 其 后 继 集 合 定 义 为 A + = A ∪ { A } ( 所 以 每 个 集 合 的 后 继 是 唯 一 的 ) 对于集合A,其后继集合定义为A^+ = A \cup \{A\}(所以每个集合的后继是唯一的) AA+=A{A}()

    • 所以我们知道后继集合的几点性质:
      • A ⊆ A + ( A 的 元 素 在 A + 里 ) ; A ∈ A + ( A 本 身 也 在 A + 里 ) A \subseteq A^+(A的元素在A^+里);A \in A^+ (A本身也在A^+里) AA+(AA+)AA+(AA+)
      • A + ≠ ϕ A^+ \neq \phi A+=ϕ
    • 例:
      • ϕ + = { ϕ } \phi^+ = \{\phi \} ϕ+={ϕ}
      • { ϕ } + = { ϕ , { ϕ } } \{\phi\}^+ = \{\phi, \{ \phi \} \} {ϕ}+={ϕ,{ϕ}}
  • 所以由上述性质:冯·诺依曼(Von Neumann)给出了他构造自然数系统 < N , + , ⋅ > < N,+,·> <N,+,>的方案

    • KaTeX parse error: No such environment: align* at position 12: \begin{̲a̲l̲i̲g̲n̲*̲}̲ &0 = \…

    • 我们可以采用集合论中学到的归纳定义法来定义自然数:

      • 0 ∈ N ( 基 础 项 ) 0 \in N (基础项) 0N()
      • 若 n ∈ N , 则 n + ∈ N ( 归 纳 项 ) 若 n \in N , 则 n^+ \in N (归纳项) nN,n+N()
      • 只 有 有 限 次 应 用 1 与 2 得 到 的 元 素 才 是 自 然 数 只有有限次应用1与2得到的元素才是自然数 12
  • 引理: 若 n ∈ N , 则 ∪ n + = n 若n \in N, 则\cup n^+ = n nN,n+=n

Peano公理及运算性质
  • 我们前面说构造的自然数需要满足Peano公理,Peano公理的内容如下:

    • P1: 0 ∈ N 0 \in N 0N(归纳基础项)
    • P2: 若 n ∈ N , 则 n + ∈ N 若n \in N, 则n^+ \in N nN,n+N(归纳项)
    • P3: 若 n ∈ N , 则 n + ≠ 0 若n \in N, 则 n^+ \neq 0 nN,n+=0(没有以0为后继的项,0是初始项)
    • P4: 若 n , m ∈ N ∧ n + = m + , 则 n = m 若n,m \in N \wedge n^+ = m^+, 则n = m n,mNn+=m+,n=m(后继的唯一性,可由上述引理得到)
    • P5: 满 足 P 1 与 P 2 的 极 小 化 满足P1与P2的极小化 P1P2
  • 由Peano公理以及后继的性质我们可以知道作为集合的自然数的几点性质:

    • 传递性: 若 n 1 ∈ n 2 , n 2 ∈ n 3 , 则 n 1 ∈ n 3 若n_1 \in n_2, n_2 \in n_3, 则 n_1 \in n_3 n1n2,n2n3,n1n3
    • 三岐性: 对 于 任 意 两 个 n 1 , n 2 ∈ N , 满 足 ( n 1 ∈ n 2 ) ∨ ( n 1 = n 2 ) ∨ ( n 2 ∈ n 1 ) 对于任意两个n_1, n_2 \in N, 满足(n_1 \in n_2) \vee (n_1 = n_2) \vee (n_2 \in n_1) n1,n2N,(n1n2)(n1=n2)(n2n1)
    • 良基性: 不 存 在 一 个 自 然 数 的 无 穷 递 降 序 列 n 1 ∼ , 使 得 n i + 1 ∈ n i 不存在一个自然数的无穷递降序列n_{1\sim},使得n_{i+1} \in n_i n1使ni+1ni
  • 所以我们由Peano公理的三大性质可以知道,我们可以定义出自然数元素之间的关系,以及自然数的运算,我们称之为大/小于,加法,乘法。

    • 小于: 若 m , n ∈ N 且 m ∈ n , 则 我 们 称 m 小 于 n , 记 作 m < n 若m,n \in N 且 m \in n, 则我们称m小于n,记作m<n m,nNmn,mnm<n(很明显,小于关系是一个逆序关系)
    • 由此我们也可以类推出小于等于关系,它是一个(全)偏序关系,由于良基性,它也会是一个良序关系。
    • 加法: m + 0 = 0 ; m + n + = ( m + n ) + m+0 = 0; m + n^+ = (m + n)^+ m+0=0;m+n+=(m+n)+
    • 乘法: m ⋅ 0 = 0 ; m ⋅ n + = m ⋅ n + m m \cdot 0 = 0; m \cdot n^+ = m \cdot n + m m0=0;mn+=mn+m (自己拿两个数加一加乘一乘就能理会其中的归纳意味)
数学归纳法
  • 上文中Peano公理的极小化有几种表述的方法,详细见集合论一章的描述,其中有一种极小化方法如下:
    • 若 S ⊆ N 满 足 0 ∈ S 且 n ∈ S → n + ∈ S ( 1 / 2 条 ) , 则 S = N 若S \subseteq N 满足0 \in S且n \in S \rightarrow n^+ \in S(1/2条),则S = N SN0SnSn+S(1/2)S=N
  • 这个极小化方法是数学归纳法的基础,下面是数学归纳法的叙述(第一归纳法)
    • 设 P ( n ) 是 自 然 数 论 域 上 的 性 质 ( 或 谓 词 ) , 若 能 证 明 1 与 2 , 则 对 所 有 n ∈ N , P ( n ) 为 真 设P(n)是自然数论域上的性质(或谓词),若能证明1与2,则对所有n\in N,P(n)为真 P(n)()12nN,P(n)
      1. P ( 0 ) 为 真 P(0)为真 P(0)
      2. 对 任 何 n ∈ N , P ( n ) ⇒ P ( n + ) 对任何n \in N, P(n) \Rightarrow P(n^+) nN,P(n)P(n+)
    • 可表述为: P ( 0 ) ∧ ( ∀ n ) ( P ( n ) → P ( n + 1 ) ) ⇒ ∀ n P ( n ) P(0) \wedge (\forall n)(P(n) \rightarrow P(n+1)) \Rightarrow \forall n P(n) P(0)(n)(P(n)P(n+1))nP(n)
    • 基础项也可从非0数k开始:
      • P ( k ) ∧ ( ∀ n ) ( n ≥ k ∧ P ( n ) → P ( n + 1 ) ) ⇒ ∀ n ( n ≥ k → P ( n ) ) P(k) \wedge (\forall n)(n \geq k \wedge P(n) \rightarrow P(n+1)) \Rightarrow \forall n(n \geq k \rightarrow P(n)) P(k)(n)(nkP(n)P(n+1))n(nkP(n))
  • 我们可以从第一归纳法推出第二归纳法:
    • ∀ n ( ∀ k ( k < n → P ( k ) ) → P ( n ) ) ⇒ ∀ n P ( n ) \forall n(\forall k(k<n \rightarrow P(k)) \rightarrow P(n)) \Rightarrow \forall nP(n) n(k(k<nP(k))P(n))nP(n)
    • 上述归纳不需要单独列出P(0)条件,因为任取到n=0时,条件等价于P(0)
  • 二维归纳原理:暂略
基数
集合大小的度量与比较
  • 比较两个集合的大小有两个方法:
    • 计数法:数出元素的个数,谁大谁多。
    • 愚人比宝:每次各取其一,看谁先取完。
    • 对于一个无限集,计数法失效,但我们怎么用第二个方法?可以在该集合与某个自然数之间建立一个双射。
  • 等势:若在两个集合之间存在一个双射,则称集合对等(或等势),记作 A ∼ B A \sim B AB
    • 我们易知等势关系具有自反对称传递性,是等价关系
  • 集合是有穷集 当且仅当 它与一个自然数等势,且唯一(由三岐性反证法证明),这个自然数被称为有穷集合的基数,记作 # A \# A #A
    • 而若集合是无穷极,就不能与一个自然数等势
  • 定义了有穷集合的基数,我们就可以定义出对应关系与基数大小了
    • 显 然 , A ∼ B ⇒ # A = # B 显然,A \sim B \Rightarrow \# A = \# B AB#A=#B
    • 若 存 在 A 到 B 的 单 射 , 则 也 就 是 A 等 势 的 自 然 数 与 B 的 自 然 数 之 间 存 在 单 射 , 所 以 # A ≤ # B 若存在A到B的单射,则也就是A等势的自然数与B的自然数之间存在单射,所以\# A \leq \# B ABAB#A#B
    • 若 # A ≤ # B 且 # A ≠ # B , 则 记 为 # A < # B 若\# A \leq \# B且\# A \neq \# B,则记为\# A < \# B #A#B#A=#B#A<#B
    • 由自然数的三岐性可知,任何两个基数之间可以比较大小
    • 基数相等是等价关系,小于等于是偏序关系
  • 小技巧:我们可以通过tan函数建立任何一个连续的开区间与实数R的双射等势关系
    • 正是如此,我们发现无穷集合可以与它本身的真子集等势(这是无穷集合的一固有性质)
抽屉原理
  • 由上述表述,我们可发现无穷集合与有限集合的一点根本差别:
    • 任何与自身真子集等势的集合都是无穷集合
    • 所以任何有限集都不能与自身的真子集对等
  • 上述对于有限集的叙述叫做抽屉原理(鸽笼原理),通俗的说:
    • 你有n+1本书,但是只有个抽屉,你就建立不了一个n+1与n的双射,一定会有一个抽屉放了不止一本书。
    • 形式抽象化的表示为:
      • 把 s ( s ≥ 1 ) 个 元 素 分 成 t 组 , 必 有 一 个 组 至 少 有 ⌈ s / t ⌉ 个 元 素 ( ⌈ ⌉ 为 向 上 取 整 的 记 号 ) 把s(s\geq 1)个元素分成t组,必有一个组至少有\lceil s/t \rceil 个元素(\lceil \rceil 为向上取整的记号) s(s1)ts/t()
无穷集
  • 上文中提到了有穷集合的基数的概念,我们拓展它,让它不再局限在元素个数这一个概念,对于无限集,我们也定义它的基数,只是规定特殊的记号。

    • 我 们 令 # N = ℵ 0 我们令\# N = \aleph_0 #N=0
    • 对于上文中关于有穷集合基数的大小的性质,都可以推广到基数上
  • 基数的定义: F 是 集 合 组 , ∼ 是 F 上 的 等 势 关 系 , 关 系 ∼ 在 F 上 的 等 价 类 称 为 基 数 F是集合组,\sim 是F上的等势关系,关系\sim在F上的等价类称为基数 FFF

    • 对 于 A ∈ F 对于A \in F AF我们本应将基数记为 [ A ] ∼ [A]_\sim [A] ,但我们沿用上面的记号以达到统一概念的目的,记为 # A \# A #A
  • 可数无穷集合:与自然数等势的集合我们称为可数无穷集合,基数为 ℵ 0 \aleph _0 0

    • 可数集合 = 有穷集合 + 无穷可数集合,其余均是不可数集合
  • 定理:无穷集的三个等价条件

    • A是无穷集
    • A有可数无穷的子集(证明:可以从出去已选元素的A中选择元素,因为A是无穷的,所以取之不尽,这样就构造出了一个可数无穷的子集)
    • A有真子集与它等势
  • 上文中我们提到了单射可以确定两个集合基数的大小,满射也同样可以

    • 存 在 A 到 B 的 满 射    ⟺    # B ≤ # A 存在A到B的满射 \iff \# B \leq \# A AB#B#A

    • 证明:

    • KaTeX parse error: No such environment: align* at position 12: \begin{̲a̲l̲i̲g̲n̲*̲}̲ \Right…

  • 还有几个有趣的问题:

    • N × N ∼ N N\times N \sim N N×NN
    • N ∼ Q N \sim Q NQ
    • N ∼ Z N \sim Z NZ
  • 实数集合不可数(证明:在(0,1)上构造一个无穷序列,然后利用规则,找出一个数不属于这个序列,推出矛盾,实数集合不可数),下面我们讨论它的基数

    • 引理:对于每个集合A,皆有 # A < # ρ ( A ) \# A < \# \rho(A) #A<#ρ(A)
      • 首 先 , 我 们 可 以 定 义 g ( a ) = { a } 使 得 A → ρ ( A ) , 显 然 g 是 单 射 , 所 以 # A ≤ # ρ ( A ) 首先,我们可以定义g(a) = \{a\}使得A\rightarrow \rho(A),显然g是单射,所以\# A \leq \# \rho(A) g(a)={a}使Aρ(A),g#A#ρ(A)
      • 然 后 通 过 反 证 法 来 证 明 # A ≠ # ρ ( A ) 然后通过反证法来证明\# A \neq \# \rho (A) #A=#ρ(A)
    • 因为不可数,所以 # N ≠ # R \# N \neq \# R #N=#R,我们定义 # R = ℵ \# R = \aleph #R=
    • 我们可以证明: # ρ ( N ) = # R \# \rho(N) = \# R #ρ(N)=#R
      • 证明非常的精彩,利用集合的特征函数,与实数的二进制编码
      • 任意给定一个实数,写出实数的二进制编码,对于编码上的每一位,为1则表示在对应的集合中
      • 这样我们就得到了一个实数到一个自然数集合的双射
    • 所以 # R = # ρ ( N ) > # N \# R = \# \rho(N) > \# N #R=#ρ(N)>#N,即 ℵ > ℵ 0 \aleph > \aleph_0 >0
  • 有意思的问题:

    • # ( R × R ) = ℵ \# (R \times R) = \aleph #(R×R)= (思路:找一个特定的值域为R的二元连续函数)
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值