V2VFormer++ [2023 TITS] 论文阅读笔记 解决什么问题、贡献构建了第一个多模态车对车协同感知框架,称为 V2VFormer++;现有方法优缺点前、中、后期融合均基于LiDAR,缺点:LiDAR特征稀疏性和不均匀性容易导致特征模糊和语义缺陷;现有协同融合方法大多集中在局部区域之间的空间相关性,而没有用于重叠语义提炼的全局特征交互。本文方法利用相机-雷达多模态输入,克服仅激光雷达的缺点;设计了一个简单而有效的多模态融合模块动态通道融合(DCF ),用于以自适应方式进行像素点对应聚合;
论文阅读笔记 QUEST:Query Stream for Practical Cooperative Perception[2024 ICRA] 解决什么问题、贡献(领域问题、行业意义、社会价值)协同感知任务中提出Query协同的概念,实现可解释的实例级灵活的特征交互。现有方法优缺点大多数协同方法直接聚合LiDAR特征:可以保留原始信息,缺点是传输成本高;只传输感知结果:最节省传输带宽,缺点是性能高度依赖于精确的坐标参数转换;特征级融合更加灵活,但是场景级的协同特征对于感知来说是冗余的,且可解释性较差。现有基于Query的方法都是针对个体感知设计的,本文将其拓展到协同感知。本文方法(理论依据、方法公式推导、实验验证)
EMIFF: [2024 ICRA] 论文阅读笔记 EMIFF是一种新颖的多视图中间融合框架,用于基于摄像机的VIC3D任务。为了纠正姿态误差和时间异步的负面影响,我们设计了一个多尺度交叉注意模块和相机感知通道掩蔽模块来融合和增强多视图特征。EMIFF还通过特征压缩有效地降低了传输成本,并在DAIR-V2X-C基准测试中取得了最先进的结果,显著优于之前的EF和LF方法。未来的研究指出,将框架扩展到更多的数据模式。
End-to-End Autonomous Driving through V2X Cooperation 协同端到端 论文阅读笔记 [2024 CVPR UniV2X] 通过V2X通信,协同利用自主车辆和基础设施传感器数据已成为先进自动驾驶的一种有前景的方法。然而,目前的研究主要集中在改进单个模块,而不是通过端到端的学习来优化最终的规划性能,导致数据潜力未得到充分利用。在本文中,我们介绍了UniV2X,这是一种开创性的协同式自动驾驶框架,可将跨不同视图的所有关键驾驶模块无缝集成到统一网络中。本文提出了一种稀疏密集混合数据传输和融合机制,用于车辆与基础设施的有效合作,具有以下1)有效地同时增强智能体感知、在线地图和占用预测,最终提高规划性能。
GenAD: Generative End-to-End Autonomous Driving论文阅读笔记 [2024 ECCV] 从原始传感器直接生成规划结果一直是自动驾驶的解决方案,最近引起了越来越多的关注。大多数现有的端到端自动驾驶方法都将这个问题分解为感知、运动预测和规划。然而,我们认为传统的渐进式管道仍然不能全面地模拟整个交通演变过程,例如,自我汽车与其他交通参与者之间的未来互动以及先验的结构轨迹。在本文中,我们探索了端到端自动驾驶的新范式,其中关键是预测自我汽车和周围环境在给定过去场景下的演变。我们提出了GenAD,这是一个生成框架,将自动驾驶转换为生成建模问题。
强化学习与模仿学习结合论文阅读笔记 [2022 NeurlPS Waymo] 模仿学习(IL)是一种简单而强大的方法,可以使用高质量的人类驾驶数据,这些数据可以大规模收集,以产生类似人类的行为。然而,仅基于模仿学习的政策往往不能充分考虑安全性和可靠性问题。
端到端论文-GraphAD-鉴智机器人 为了进一步避免与其他道路智能体的碰撞,确保驾驶安全,我们遵循UniAD[12]的实现来训练占位头,占位头的预测可用于对预测的规划轨迹进行后优化。其中xdi (t)为预测的未来时刻t的位置,xsj(k)为预测的地图元素的第k个坐标点。ISG将交通参与者和道路元素作为图中的节点,并通过边来表示它们之间的交互关系,从而构建了一个反映交通场景动态的图模型。
不同材质发射率对红外图像成像的影响 物体的温度与发射出的红外能的关系,粗略看来似乎用一句话就可以描述清楚:高温物体发射出较多的红外能,而低温物体发射出较少的红外能。理论上,通过简单地测定被测目标发射出的红外能,就可以知道它的温度。然而实际上并不是那么简单的。因为目标物体发射出的红外能并不是仅由温度这一个因素来决定的。还有另一个变量必须考虑,这个变量我们称之为发射率(或发射的趋势)。一个物体的发射率受到材料本身、表面状态、反射率和不透明度的影响。发射率常常会使测温变得复杂。因此,理解发射率的概念及其特性,对于正确使用红外测温仪是至关重要的。
本科毕设论文(YOLOV5+注意力机制) 在人们所熟知的领域计算机视觉中,最为广泛流传的目标检测近些年发展迅速,它能够为如今的生活带来很多的便利,改善人类的生产生活,目标检测的应用可谓十分广泛,大大小小的应用都可在现实生活中见到,如上下班的智能门禁、智能人脸识别、行人检测、购物时商品检测以及垃圾分类时垃圾检测以避免误分类现象等。一般来说,目标检测涉及两个方面,一是目标的定位,二是目标的类别名称标注。由于人工智能以及近年来硬件计算能力的发展,在卷积神经网络基础上进行深度学习的研究也随之不断发展。然而,就目前的发展状况来看,目标检测仍有一部分的问题,最