- 博客(15)
- 收藏
- 关注
原创 SLAM 中常见坐标系及转换关系
FRD:X轴向前,Y轴向右,Z轴向下,Front-Right-Down。如果IMU是按照前-右-下安装的,那么就是NED坐标系或者纬经高。如果IMU是按照右-前-上安装的,那么就是ENU坐标系或者经纬高。FLU:X轴向前,Y轴向左,Z轴向上,Front-Left-Up。roll、potch、yaw对应关系。roll、potch、yaw对应关系。
2024-12-18 19:15:52
684
原创 Ubuntu22.04下flameshot无法正常截图问题(无法编辑截图框选的内容,无法贴图,没有菜单栏)
Ubuntu22.04下flameshot无法正常截图问题(无法编辑截图框选的内容,无法贴图,没有菜单栏)fflameshot不能很好地支持Ubuntu22默认使用Wayland显示协议,将协议换成X11即可。解决方法将gdm3重启,使设置生效。
2024-12-18 19:10:35
459
原创 VirtualBox虚拟机中rqt_graph只有任务栏图标但不显示解决方法
VirtualBox虚拟机中rqt_graph只有任务栏图标但不显示解决方法。
2024-12-17 21:18:53
174
原创 经典激光SLAM算法发展流程
Scan-to-Scan,用少量角点和面点进行帧间里程计匹配(c),速度快,© (d)计算角点面点阈值不同。滑动窗口,多帧与地图之间匹配:慢,实施性差(多帧才能将IMU约束引入到残差中)将当前帧点云的特征点(角点、面点等)根据优化后的位姿变换投影到全局坐标系中。如果当前帧包含新区域的点云(地图中不存在的部分),将这些点添加到地图中。将原始点云(a)根据连通域进行分割,滤除散点之后再计算角点和面点。Scan-to-Map:用所有角点和面点与地图进行匹配。LOAM:单帧与地图之间匹配(1Hz)
2024-12-17 21:17:56
969
原创 V2VFormer++ [2023 TITS] 论文阅读笔记
解决什么问题、贡献构建了第一个多模态车对车协同感知框架,称为 V2VFormer++;现有方法优缺点前、中、后期融合均基于LiDAR,缺点:LiDAR特征稀疏性和不均匀性容易导致特征模糊和语义缺陷;现有协同融合方法大多集中在局部区域之间的空间相关性,而没有用于重叠语义提炼的全局特征交互。本文方法利用相机-雷达多模态输入,克服仅激光雷达的缺点;设计了一个简单而有效的多模态融合模块动态通道融合(DCF ),用于以自适应方式进行像素点对应聚合;
2024-08-05 20:09:54
895
1
原创 End-to-End Autonomous Driving through V2X Cooperation 协同端到端 论文阅读笔记 [2024 CVPR UniV2X]
通过V2X通信,协同利用自主车辆和基础设施传感器数据已成为先进自动驾驶的一种有前景的方法。然而,目前的研究主要集中在改进单个模块,而不是通过端到端的学习来优化最终的规划性能,导致数据潜力未得到充分利用。在本文中,我们介绍了UniV2X,这是一种开创性的协同式自动驾驶框架,可将跨不同视图的所有关键驾驶模块无缝集成到统一网络中。本文提出了一种稀疏密集混合数据传输和融合机制,用于车辆与基础设施的有效合作,具有以下1)有效地同时增强智能体感知、在线地图和占用预测,最终提高规划性能。
2024-08-01 20:39:00
688
原创 GenAD: Generative End-to-End Autonomous Driving论文阅读笔记 [2024 ECCV]
从原始传感器直接生成规划结果一直是自动驾驶的解决方案,最近引起了越来越多的关注。大多数现有的端到端自动驾驶方法都将这个问题分解为感知、运动预测和规划。然而,我们认为传统的渐进式管道仍然不能全面地模拟整个交通演变过程,例如,自我汽车与其他交通参与者之间的未来互动以及先验的结构轨迹。在本文中,我们探索了端到端自动驾驶的新范式,其中关键是预测自我汽车和周围环境在给定过去场景下的演变。我们提出了GenAD,这是一个生成框架,将自动驾驶转换为生成建模问题。
2024-08-01 20:30:36
838
原创 强化学习与模仿学习结合论文阅读笔记 [2022 NeurlPS Waymo]
模仿学习(IL)是一种简单而强大的方法,可以使用高质量的人类驾驶数据,这些数据可以大规模收集,以产生类似人类的行为。然而,仅基于模仿学习的政策往往不能充分考虑安全性和可靠性问题。
2024-07-31 22:19:00
2005
原创 端到端论文-GraphAD-鉴智机器人
为了进一步避免与其他道路智能体的碰撞,确保驾驶安全,我们遵循UniAD[12]的实现来训练占位头,占位头的预测可用于对预测的规划轨迹进行后优化。其中xdi (t)为预测的未来时刻t的位置,xsj(k)为预测的地图元素的第k个坐标点。ISG将交通参与者和道路元素作为图中的节点,并通过边来表示它们之间的交互关系,从而构建了一个反映交通场景动态的图模型。
2024-07-31 20:02:31
1089
原创 不同材质发射率对红外图像成像的影响
物体的温度与发射出的红外能的关系,粗略看来似乎用一句话就可以描述清楚:高温物体发射出较多的红外能,而低温物体发射出较少的红外能。理论上,通过简单地测定被测目标发射出的红外能,就可以知道它的温度。然而实际上并不是那么简单的。因为目标物体发射出的红外能并不是仅由温度这一个因素来决定的。还有另一个变量必须考虑,这个变量我们称之为发射率(或发射的趋势)。一个物体的发射率受到材料本身、表面状态、反射率和不透明度的影响。发射率常常会使测温变得复杂。因此,理解发射率的概念及其特性,对于正确使用红外测温仪是至关重要的。
2024-03-25 23:18:36
2920
原创 本科毕设论文(YOLOV5+注意力机制)
在人们所熟知的领域计算机视觉中,最为广泛流传的目标检测近些年发展迅速,它能够为如今的生活带来很多的便利,改善人类的生产生活,目标检测的应用可谓十分广泛,大大小小的应用都可在现实生活中见到,如上下班的智能门禁、智能人脸识别、行人检测、购物时商品检测以及垃圾分类时垃圾检测以避免误分类现象等。一般来说,目标检测涉及两个方面,一是目标的定位,二是目标的类别名称标注。由于人工智能以及近年来硬件计算能力的发展,在卷积神经网络基础上进行深度学习的研究也随之不断发展。然而,就目前的发展状况来看,目标检测仍有一部分的问题,最
2024-03-25 23:13:52
1343
原创 ubuntu18.04安装pytorch1.9.0和torchvision0.10.0
Ubuntu18.04安装pytorch1.9.0和torchvision0.10.0
2022-10-23 22:01:45
1999
2
本科毕设-YOLOV5+注意力机制训练测试源码
2023-06-28
ChatGPT在科研中的应用PPT
2023-05-14
ubuntu18.04安装pytorch1.9.0和torchvision0.10.0
2023-05-14
牛客网C++项目代码 TinyWebserver
2023-05-14
本科毕设-YOLOV5+注意力机制源码及训练测试权重及结果
2023-05-14
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人