端到端
文章平均质量分 91
智驾攻城狮
自动驾驶感知算法工程师
展开
-
论文阅读笔记 QUEST:Query Stream for Practical Cooperative Perception[2024 ICRA]
解决什么问题、贡献(领域问题、行业意义、社会价值)协同感知任务中提出Query协同的概念,实现可解释的实例级灵活的特征交互。现有方法优缺点大多数协同方法直接聚合LiDAR特征:可以保留原始信息,缺点是传输成本高;只传输感知结果:最节省传输带宽,缺点是性能高度依赖于精确的坐标参数转换;特征级融合更加灵活,但是场景级的协同特征对于感知来说是冗余的,且可解释性较差。现有基于Query的方法都是针对个体感知设计的,本文将其拓展到协同感知。本文方法(理论依据、方法公式推导、实验验证)原创 2024-08-05 12:00:29 · 904 阅读 · 1 评论 -
End-to-End Autonomous Driving through V2X Cooperation 协同端到端 论文阅读笔记 [2024 CVPR UniV2X]
通过V2X通信,协同利用自主车辆和基础设施传感器数据已成为先进自动驾驶的一种有前景的方法。然而,目前的研究主要集中在改进单个模块,而不是通过端到端的学习来优化最终的规划性能,导致数据潜力未得到充分利用。在本文中,我们介绍了UniV2X,这是一种开创性的协同式自动驾驶框架,可将跨不同视图的所有关键驾驶模块无缝集成到统一网络中。本文提出了一种稀疏密集混合数据传输和融合机制,用于车辆与基础设施的有效合作,具有以下1)有效地同时增强智能体感知、在线地图和占用预测,最终提高规划性能。原创 2024-08-01 20:39:00 · 538 阅读 · 0 评论 -
GenAD: Generative End-to-End Autonomous Driving论文阅读笔记 [2024 ECCV]
从原始传感器直接生成规划结果一直是自动驾驶的解决方案,最近引起了越来越多的关注。大多数现有的端到端自动驾驶方法都将这个问题分解为感知、运动预测和规划。然而,我们认为传统的渐进式管道仍然不能全面地模拟整个交通演变过程,例如,自我汽车与其他交通参与者之间的未来互动以及先验的结构轨迹。在本文中,我们探索了端到端自动驾驶的新范式,其中关键是预测自我汽车和周围环境在给定过去场景下的演变。我们提出了GenAD,这是一个生成框架,将自动驾驶转换为生成建模问题。原创 2024-08-01 20:30:36 · 731 阅读 · 0 评论 -
端到端论文-GraphAD-鉴智机器人
为了进一步避免与其他道路智能体的碰撞,确保驾驶安全,我们遵循UniAD[12]的实现来训练占位头,占位头的预测可用于对预测的规划轨迹进行后优化。其中xdi (t)为预测的未来时刻t的位置,xsj(k)为预测的地图元素的第k个坐标点。ISG将交通参与者和道路元素作为图中的节点,并通过边来表示它们之间的交互关系,从而构建了一个反映交通场景动态的图模型。原创 2024-07-31 20:02:31 · 955 阅读 · 0 评论