【用于检测圆形形状的可分离性滤波器】利用Fisher准则在给定图像中检测圆形对象研究(Matlab代码实现)

  💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、文章下载


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

【用于检测圆形形状的可分离性滤波器】利用Fisher准则在给定图像中检测圆形对象研究

本文包含了根据[1]和[2]中所述算法的实现及使用示例,用于在给定图像中检测圆形物体。 [2]中的算法,称为可分离性滤波器,通过滑动窗口在整个图像上使用圆形掩模滤波器计算Fisher准则。通过对Fisher准则的计算,我们得到一个可分离性映射图,其中局部峰值最有可能是圆形物体的中心。为了加速[2]的计算,[1]的工作通过四个组合的矩形形状来近似圆形,并在计算中采用了积分图像方法。详细信息请参考[1]和[2]。

文献1:

在本文中,我们提出了一种快速组合的可分离性滤波器,能够选择性地检测图像中人脸的圆形特征,如瞳孔和鼻孔。所提议的滤波器设计为多个矩形可分离滤波器的组合,以便同时实现高速处理和高定位精度。使用合成图像和真实面部图像的评估实验表明,所提议的滤波器比传统的圆形可分离性滤波器快70倍。

1 引言

从输入图像中检测特征点是计算机视觉中的一个基础过程。检测特征点的准确性在很大程度上影响着整个识别系统的性能,特别是在进行识别过程之前利用特征点位置进行对象分割的过程中更是如此。

已有多种类型的滤波器用于提取特征点。特别是,圆形可分离性滤波器[3]是最有效的滤波器之一,已被广泛应用于各种场景,如瞳孔和鼻孔的检测[3, 7, 10]、人头部跟踪[6]、足球转播中的球体追踪[9]以及医学图像中轴突上移动粒子的检测[4]。

圆形可分离性滤波器(CSF)是对矩形可分离性滤波器[2]的扩展。它是一种基于区域的滤波器,具有很强的能力,能够提取低对比度的阶跃边和线边缘。矩形可分离性滤波器(RSF)由多个区域组成。在最简单的阶跃边提取配置中,矩形可分离性滤波器由两个矩形区域(RSF2)组成,并输出这两个区域图像亮度分布的可分离性,其中可分离性依据Fisher准则计算。具有三个区域的矩形可分离性滤波器(RSF3)能够提取线和屋顶边缘。

在CSF中,RSF2的两个矩形区域被两个同心环形区域取代。因此,CSF能够提取圆形特征点的半径和中心位置。

CSF即使在非常嘈杂的条件下,也能从低对比度图像中检测特征点。与基于梯度的滤波器相比,其定位精度非常高。然而,CSF有一个严重的计算复杂度问题,这个问题源自计算图像亮度的均值和方差以获得可分离性图所需的计算量。

文献2:

摘要

本文提出了一种快速且精确的特征点提取方法,旨在从动态图像中提取诸如瞳孔、鼻孔、口部边缘等特征点用于人脸识别。使用这些特征点进行的人脸提取准确性极大地影响了基于模式匹配的人脸识别方法的能力。考虑到动态图像识别所需的大量尝试和实时注册的需求,这一处理必须迅速进行。过去提出的各种提取方法由于个体差异、表情变化、脸部朝向或光照变化等因素的影响,难以稳定地进行提取。这些方法在提取精度和处理速度方面远不能令人满意。所提议的方法通过形状提取与模式匹配相结合,以较低的计算成本实现了高定位精度。具体而言,它使用可分离性滤波器提取瞳孔、鼻孔、口部边缘等特征点候选。随后,基于子空间法的模式匹配被用来从候选中选择正确的特征点。通过评估系统测试了不同条件下的面部图像,结果显示:对于1700张静态图像,特征点提取率为99%;而在不使用硬件辅助的情况下,对于9880帧动态图像,以每秒10次尝试的速度,提取率达到了98%。
关键词:面部特征点提取;人脸识别;子空间方法;可分离性。

  1. 引言

本文介绍了一种新颖的方法,用于从动态图像中快速且准确地提取人脸识别所需的特征点,如瞳孔、鼻孔、口部边缘等。该方法对抗脸部方向和光照变化具有鲁棒性。由于个体间形状与亮度的差异,以及表情变化、头部运动、光照等因素引起的变动,特征点的稳定提取是一项挑战性任务。 面部特征点提取的准确性同样极大地影响了基于模板匹配的人脸识别方法的能力[1, 2, 11-13]。这些方法涉及使用瞳孔、鼻孔和口部边缘等特征点作为参照标准,通过二维仿射变换对人脸图像进行尺寸和位置的标准化裁剪,然后通过与预注册的参考图像(即字典图像)进行比较来度量模式相似度。因此,标准化图像的裁剪精度,以及作为标准化依据的特征点的提取精度,是直接影响识别能力的重要因素。两篇详细文章第4部分下载。

📚2 运行结果

由于运行结果比较多,这里仅展现部分结果。

部分代码:

%Read Image
Im = imread('testimages/cheek.jpg');
gr = double(rgb2gray(Im));
figure(40);clf;
image(Im);
axis equal tight;
title('Original parts of face');

tic
circMap = zeros(size(gr,1),size(gr,2));
for nR = 8:2:12, %multiple scales of separability filter's size (radius)
    r=nR; % radius (please refer to [2])
    r1=nR; % inner circle radius (please refer to [2])
    r2=nR; % outer circle radius (please refer to [2])
    cMap = cvtCircleSepFilter(gr, r, r1, r2);
    circMap = max(circMap, cMap);
end
timerequired=toc;
fprintf('Time required: %g seconds\n',timerequired);

figure(41);clf;
subplot(1,2,1);
imagesc(cMap);
axis equal tight;
title('Separability map (circular filter)');

subplot(1,2,2);
image(imfuse(gr,cMap));
axis equal tight;
title('Fused image (circular filter)');

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1] Y. Ohkawa, C. H. Suryanto, K. Fukui, "Fast Combined Separability Filter for Detecting Circular Objects", The twelfth IAPR conference on Machine Vision Applications (MVA) pp.99-103, 2011.

[2] K. Fukui, O. Yamaguchi, "Facial feature point extraction method based on combination of shape extraction and pattern matching", Systems and Computers in Japan 29 (6), pp.49-58, 1998.

🌈4 Matlab代码、文章下载

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值