基于交替方向乘法(ADMM)的PAPR约束下传输波束成形器设计的方法研究(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、数据、文章下载


💥1 概述

上一次介绍的是用Python代码编程的,这次用Matlab代码实现。回顾见:

基于交替方向乘法(ADMM)的PAPR约束下传输波束成形器设计的方法研究(Python代码实现)

摘要
本文研究了峰值平均功率比( PAPR )约束对发射波束成形器设计问题的影响,目标是在功率效率(最大化平均发射功率)与主瓣功率波动、峰值旁瓣电平( PSL )等指标之间建立折中。通常,在发射波束成形中使用单位模权重来最大化平均发射功率。然而,单模权重以牺牲其他性能指标为代价来最大化功率效率。研究表明,即使将设计问题从单模条件( PAPR )中稍微放松,即设置PAPR,也会在可忽略功率效率损失的情况下显著改善其他性能指标。为了实现指标之间的折衷,给出了一种基于交替方向乘子法( ADMM )的发射波束形成器设计方案。该方案既适用于窄带和宽带波束形成器,也适用于其他相关问题,如单模雷达波形设计问题。

引言
在传统的窄带发射波束形成器中,每个天线单元发射相同的低通等效信号,该信号通过选定的复数值权重进行缩放。发射波束图设计问题是要确定权重,以满足诸如平顶波束图、低旁瓣、功率效率等要求。通常,在发射波束形成中使用单模权重(幅度恒定的权重)来最大化发射功率。功率最大化对于扩展传感器的仪表范围至关重要,该范围与(平均功率 × 口径)的四次方根成正比,并且还可以提高影响传感器估计操作精度的信噪比(SNR)。除了发射功率最大化之外,具有平顶主瓣和低旁瓣的波束图对于传感系统的可靠性来说也是极为理想的。对于接收波束形成系统,旁瓣电平(如峰值旁瓣电平(PSL)和积分旁瓣电平(ISL))是主要考虑因素,对于其优化也存在许多高效的方法。不幸的是,发射波束形成应用中独特的功率最大化要求与其他要求(旁瓣抑制、平顶主瓣)存在冲突,因此在构建发射波束形成器时必须进行工程折衷。在本文中,我们在峰值功率与平均功率比(PAPR)约束下研究发射波束形成问题,以便为设计高功率效率下的平顶波束图和低旁瓣提供这种折衷。

在雷达信号处理文献中,对于MIMO系统,已经研究了在PAPR约束下的发射波束形成问题。例如,在文献[5]中,考虑了允许每个天线单元发射独立波形的波形多样性特征,以解决在PAPR约束下的发射波束形成问题。文献中的一些方法(如[4,5,7,10])在初始设计阶段忽略PAPR约束,并通过文献[11]中给出的操作,将没有PAPR约束时获得的解投影到满足该约束的向量集合上。尽管将问题分为两个阶段,但这些方法已被证明具有良好的性能。与这些方法不同,文献[12]将PAPR约束下的序列设计问题转化为一个无约束问题,可以通过基于梯度的数值搜索来解决。

主动感知(发射码设计)的波形设计的数学表述与发射波束形成问题非常相似。与发射波束形成一样,已知在码设计问题中,选择单模序列可以最大化波形能量。单模序列还可以通过最大化入射到目标上并从目标反射的能量来最大化可实现的灵敏度。因此,设计具有低自相关旁瓣的周期性或非周期性单模序列是主动感知系统的主要目标,参见文献[4,14–19]。由于低自相关旁瓣问题与信号的频谱形状的平坦性直接相关,因此在包括文献[15,17,20,21]在内的许多工作中都研究了单模序列的频谱整形问题。在文献[20]中,提出了SHAPE算法,通过引入辅助变量来满足时间和频谱约束,从而设计满足这些约束的序列。在文献[15]中,采用拉格朗日规划神经网络(LPNN)来设计满足频谱约束的单模序列。在文献[21]中,描述的ANSLM最小化了峰值阻带电平与通带最小电平的比值,但代价是与单模序列相关的频谱通带中的纹波增加。

在本研究中,我们利用交替方向乘子法(ADMM)来解决在PAPR约束下的发射波束形成问题。ADMM对于凸问题已知可以收敛到唯一的全局最优解。然而,对于非凸问题,无法保证解的最优性,甚至无法保证ADMM迭代的收敛性。尽管存在这一挫折,ADMM已在许多问题中成功应用。在文献[17]中,通过引入辅助变量来分离目标函数的线性和二次项,并仅对线性项施加非凸的单模约束,使用ADMM设计了具有低自相关旁瓣的单模序列。此外,通过控制通带纹波和峰值阻带电平,使用ADMM解决了频谱整形波形设计问题。在文献[19]中,提出了一种基于ADMM的方法来解决具有非凸幅度约束的优化问题,这些约束适用于频率/角度域,并给出了包括阵列模式综合、波形设计和鲁棒波束形成在内的多个示例,以证明所提方法的有效性。在文献[18]中,提出了一种基于ADMM的算法PhareADMM,通过引入辅助幅度和相位变量来规避目标函数中的绝对值运算符,从而解决相位恢复问题。通过利用离散傅里叶变换(DFT)的酉性质进行简单修改后,PhareADMM被用于设计具有低自相关旁瓣的单模周期序列。ADMM在许多优化问题中的成功应用也引发了对其收敛性的广泛研究。

在本研究中,我们采用了与文献[18]中PhareADMM公式类似的公式。主要区别在于加入了PAPR约束。加入PAPR约束需要为波束图形状和PAPR约束引入不同的惩罚参数。更具体地说,ADMM的原变量和辅助变量更新步骤中最小化的目标函数——增广拉格朗日函数,是使用针对波束图形状和PAPR约束的不同惩罚参数定义的。我们还为这个问题提出了一个简单的惩罚参数设置关系。建议的多个惩罚参数用于分别控制约束违反情况,如文献[24,25]和[26,第292页]所述。

主要贡献如下:
- 我们在PAPR约束下研究了发射波束形成器设计问题,以在功率效率略有损失的情况下设计具有低旁瓣的平顶波束图。我们用“功率效率”一词来表示平均发射功率与其最大值的偏差。当使用单模码时(PAPR = 1),发射功率达到最大值。任意权重向量的平均发射功率与最大发射功率的比值即为功率效率(参见表1中的Peff(wσ))。
- 我们提出了一个基于ADMM的多惩罚参数解决方案,分别控制波束图形状和PAPR约束的不匹配。与早期方法(先找到没有PAPR约束的解,然后将解投影到满足PAPR约束的集合上)不同,所建议的方法通过“混合”频谱处理(即波束图形状)和时间处理(即PAPR约束)的优化输出来生成解,其中混合通过惩罚参数进行控制。所呈现的结果对窄带和宽带波束形成问题均有效,并且可以扩展到波形设计问题。

📚2 运行结果

 部分代码:

L = N; % DFT

% the desired spectrum
b = N*ones(L,1);
b(sb) = b(sb)*10^(-PSL_desired_dB/20);

% error weight for weighted LS
h = N*ones(L,1);
h(pb) = h(pb)/kw;

% initialization
w_k = w_one;
y_k = zeros(L,1)+1i*zeros(L,1);
z_k = y_k/rho_L;
lambda_k = zeros(N,1)+1i*zeros(N,1);
tau_k = lambda_k/rho_N;

k = 1;

norm_err = sc+eps; % normalized error
while k<=k_max && norm_err>sc
    %%% Step-1: Auxiliary variable update
    % Obtain v^(k+1)
    P = norm(w_k+tau_k,2)^2;
    v_kplus = nearestvec_low_PAPR(w_k+tau_k,P,papr);
    
    % Obtain beta^(k+1) and alpha^(k+1)
    g = fft(w_k)+z_k;
    beta_kplus = angle(g);
    alpha_kplus = (rho_L*abs(g)+2*b.*h)./(rho_L+2*h);
    
    %%% Step-2: Primal variable update
    % Determine w^(k+1)
    gamma_kplus = alpha_kplus.*exp(1i*beta_kplus);
    s = gamma_kplus-z_k;
    baugm = N*ifft(s)+n_A*(v_kplus-tau_k);
    w_kplus = Aaugm_i*baugm;
    
    %%% Step-3: Dual update
    % Update z^(k+1) and tau^(k+1)
    z_kplus = z_k+(fft(w_kplus)-gamma_kplus);
    tau_kplus = tau_k+(w_kplus-v_kplus);
    
    % Index update
    norm_err = norm(w_kplus-w_k)/norm(w_k);
    z_k = z_kplus;
    tau_k = tau_kplus;
    w_k = w_kplus;
    k = k+1;
end
% Polish the transmitter weights
P = N;
w_star = nearestvec_low_PAPR(w_k,P,papr);

% Save the final weights to a mat file (note the output directory)
save('../results/Unimodular2_PAPR-ADMM_weights.mat','w_star');

BP=fft(w_star);
X_dB = 20*log10(abs(BP));
X_dB = X_dB-min(X_dB(pb));

ripple = max(X_dB(pb))-min(X_dB(pb));
psl = min(X_dB(pb))-max(X_dB(sb));
disp(['PSL: ' num2str(psl) 'dB, ripple: ' num2str(ripple) 'dB']);

% Finally, save the resulting plot to a PNG file (note the output directory)
plot(0:N-1,X_dB,'LineWidth',3);
axis([1 N min(X_dB)-3 max(X_dB)+3]);
ylabel('Spectrum (dB)');
xlabel('Frequency Grid Index');
legend(['\sigma = ' num2str(papr) ]);
saveas(gcf, '../results/Unimodular2_PAPR-ADMM_spectrum.png');

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1] Ö. Çayır, Ç. Candan, Transmit beamformer design with a PAPR constraint to trade-off between beampattern shape and power efficiency, Digit. Signal Process. 99 (2020) 102674, doi: 10.1016/j.dsp.2020.102674.

[2] Ö. Çayır, Ç. Candan, Transmit beamformer design with a PAPR constraint to trade-off between beampattern shape and power efficiency

🌈4 Matlab代码、数据、文章下载

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值