一文带你熟悉llama.cpp的前置补充知识

基本介绍

LLaMa.cpp是由开发者 GG 发起的一个C++编写的轻量级、高性能的CPU/GPU大语言模型推理框架,专为在本地CPU上部署量化模型而设计,它提供了一种在资源有限的设备上对LLM从模型转换、量化到推理的一站式解决方案,让LLM的部署流程变得简单而高效,能够将训练好的量化模型转换为可在CPU上运行的低配推理版本,其主要开发目标就是让开发者在消费级设备或边缘设备上本地部署运行大模型,也可以作为依赖库集成的到应用程序中提供类GPT的功能。在高性能和低资源消耗之间取得平衡,是 LLaMa.cpp 的一大亮点。

LLama.cpp支持开发者通过其提供的工具将各类开源大语言模型转换并量化成gguf格式的文件,然后实现本地量化和推理。

官方仓库:GITHUB

量化基本介绍

LLM 虽然功能强大,但由于模型规模较大,因此会消耗大量资源。这对资源受限的设备上部署带来了挑战,并且会阻碍推理速度和效率。量化提供了一种解决方案,即在保持性能的同时降低模型参数的精度。

在深度学习和计算机科学中,量化(Quantize)就是一种将模型中的参数或数据从高精度格式(通常是 FP32 位或 FP16 位)转换为低精度格式(如 8 位、4 位或整数格式)的一种模型压缩技术。量化的主要目的是减少模型的内存占用和计算资源需求,从而加速推理速度,降低硬件要求,使模型能够在低配设备上运行

常用的模型压缩技术:量化、剪枝、蒸馏、低秩自适应

基本概念

想象一下:如果把一个LLM理解成像一座繁华的大城市,城市里密集的房屋(模型的参数)无处不在,这时候如果你作为一个画家,你怎么绘制出这个城市?

如果你有钱(资源),有超强的绘画天赋(技术),那么你可能会选择一比一还原这座城市

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值