Llama.cpp 是一个基于 C/C++ 的开源项目,旨在高效地运行大型语言模型(LLM)推理,特别是在本地设备上。它由 Georgi Gerganov 开发,专注于轻量级、高性能的模型推理,支持多种硬件平台,包括 CPU 和 GPU。以下是 Llama.cpp 的核心特点和功能:
1. 核心目标
Llama.cpp 的主要目标是通过最小化设置和优化性能,在本地和云端设备上运行 LLM 推理。它特别适合资源受限的环境,能够在普通家用电脑上运行原本需要高性能 GPU 的模型。
2. 主要功能
- 模型量化:支持将模型从 32 位浮点数转换为更低精度的格式(如 16 位、8 位、4 位),从而减少内存占用并提升推理速度。
- 多硬件支持:支持 x86 CPU(AVX、AVX2、AVX512)、Apple Silicon(Metal GPU)、NVIDIA GPU(CUDA)、AMD GPU(hipBLAS)、Intel GPU(SYCL)等多种硬件平台。
- 模型格式支持:支持 GGML 和 GGUF 格式的模型,GGUF 是 Llama.cpp